Moisture content (MC) is one of the most important quality parameters of green coffee beans. Therefore, its fast and reliable measurement is necessary. This study evaluated the feasibility of near infrared (NIR) spectroscopy and chemometrics for rapid and non-destructive prediction of MC in intact green coffee beans of both Coffea arabica (Arabica) and Coffea canephora (Robusta) species. Diffuse reflectance (log 1/R) spectra of intact beans were acquired using a bench top Fourier transform NIR instrument. MC was determined gravimetrically according to The International Organization for Standardization (ISO) 6673. Samples were split into subsets for calibration (n = 64) and independent validation (n = 44). A three-component partial least squares regression (PLSR) model using raw NIR spectra yielded a root mean square error of prediction (RMSEP) of 0.80% MC; a four component PLSR model using scatter corrected spectra yielded a RMSEP of 0.57% MC. A simplified PLS model using seven selected wavelengths (1155, 1212, 1340, 1409, 1724, 1908, and 2249 nm) yielded a similar accuracy (RMSEP: 0.77% MC) which opens the possibility of creating cheaper NIR instruments. In conclusion, NIR diffuse reflectance spectroscopy appears to be suitable for rapid and reliable MC prediction in intact green coffee; no separate model for Arabica and Robusta species is needed.
Species adulteration is a common problem in the coffee trade. Several attempts have been made to differentiate among species. However, finding an applicable methodology that would consider the various aspects of adulteration remains a challenge. This study investigated an ultraviolet–visible (UV-Vis) spectroscopy-based determination of caffeine and chlorogenic acid contents, as well as the applicability of non-targeted near-infrared (NIR) spectroscopy, to discriminate between green coffee beans of the Coffea arabica (Arabica) and Coffea canephora (Robusta) species from Java Island, Indonesia. The discrimination was conducted by measuring the caffeine and chlorogenic acid content in the beans using UV-Vis spectroscopy. The data related to both compounds was processed using linear discriminant analysis (LDA). Information about the diffuse reflectance (log 1/R) spectra of intact beans was determined by NIR spectroscopy and analyzed using multivariate analysis. UV-Vis spectroscopy attained an accuracy of 97% in comparison to NIR spectroscopy’s accuracy by selected wavelengths of LDA (95%). The study suggests that both methods are applicable to discriminate reliably among species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.