The pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected more than 10 million people, including pregnant women. To date, no consistent evidence for the vertical transmission of SARS-CoV-2 exists. The novel coronavirus canonically utilizes the angiotensin-converting enzyme 2 (ACE2) receptor and the serine protease TMPRSS2 for cell entry. Herein, building upon our previous single-cell study (Pique-Regi, 2019), another study, and new single-cell/nuclei RNA-sequencing data, we investigated the expression of ACE2 and TMPRSS2 throughout pregnancy in the placenta as well as in third-trimester chorioamniotic membranes. We report that co-transcription of ACE2 and TMPRSS2 is negligible in the placenta, thus not a likely path of vertical transmission for SARS-CoV-2. By contrast, receptors for Zika virus and cytomegalovirus, which cause congenital infections, are highly expressed by placental cell types. These data show that the placenta minimally expresses the canonical cell-entry mediators for SARS-CoV-2.
Gene-by-environment (GxE) interactions determine common disease risk factors and biomedically relevant complex traits. However, quantifying how the environment modulates genetic effects on human quantitative phenotypes presents unique challenges. Environmental covariates are complex and difficult to measure and control at the organismal level, as found in GWAS and epidemiological studies. An alternative approach focuses on the cellular environment using in vitro treatments as a proxy for the organismal environment. These cellular environments simplify the organism-level environmental exposures to provide a tractable influence on subcellular phenotypes, such as gene expression. Expression quantitative trait loci (eQTL) mapping studies identified GxE interactions in response to drug treatment and pathogen exposure. However, eQTL mapping approaches are infeasible for large-scale analysis of multiple cellular environments. Recently, allele-specific expression (ASE) analysis emerged as a powerful tool to identify GxE interactions in gene expression patterns by exploiting naturally occurring environmental exposures. Here we characterized genetic effects on the transcriptional response to 50 treatments in five cell types. We discovered 1455 genes with ASE (FDR < 10%) and 215 genes with GxE interactions. We demonstrated a major role for GxE interactions in complex traits. Genes with a transcriptional response to environmental perturbations showed sevenfold higher odds of being found in GWAS. Additionally, 105 genes that indicated GxE interactions (49%) were identified by GWAS as associated with complex traits. Examples include GIPR-caffeine interaction and obesity and include LAMP3-selenium interaction and Parkinson disease. Our results demonstrate that comprehensive catalogs of GxE interactions are indispensable to thoroughly annotate genes and bridge epidemiological and genomewide association studies.
The pandemic of coronavirus disease 2019 caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected over 3.8 million people, including pregnant women. To date, no consistent evidence of vertical transmission for SARS-CoV-2 exists. This new coronavirus canonically utilizes the angiotensin-converting enzyme 2 (ACE2) receptor and the serine protease TMPRSS2 for cell entry. Herein, building upon our previous single cell study of the placenta (Pique-Regi, 2019), another study, and new single-cell/nuclei RNA-sequencing data, we investigated the expression of ACE2 and TMPRSS2 throughout pregnancy as well as in third-trimester chorioamniotic membranes. We report that co-transcription of ACE2 and TMPRSS2 is negligible, thus not a likely path of vertical transmission for SARS-CoV-2 at any stage of pregnancy. In contrast, receptors for Zika virus and cytomegalovirus which cause congenital infections are highly expressed by placental cell types. These data suggest that SARS-CoV-2 is unlikely to infect the human placenta through the canonical cell entry mediators; yet, other interacting proteins could still play a role in the viral infection.
Relapse-like ethanol-drinking behavior depends on increased glutamate transmission in the mesocorticolimbic motive circuit. Extracellular glutamate is regulated by a number of glutamate transporters. Of these transporters, glutamate transporter 1 (GLT1) is responsible for the majority of extracellular glutamate uptake. We have recently reported that ceftriaxone (CEF) treatment (i.p.), a β-lactam antibiotic known to elevate GTL1 expression, reduced ethanol intake in male alcohol-preferring (P) rats. We investigated here whether CEF treatment attenuates relapse-like ethanol-drinking behavior. P rats were exposed to free choice of 15% and 30% ethanol for 5 weeks and treated with CEF (50 and 100 mg/kg, i.p.) during the last 5 days of the 2-week deprivation period. Rats treated with CEF during the deprivation period showed a reduction in ethanol intake compared with saline-treated rats upon re-exposure to ethanol; this effect persisted for 9 days. Moreover, CEF-mediated attenuation in relapse to ethanol-drinking behavior was associated with upregulation of GLT1 level in prefrontal cortex and nucleus accumbens core. GLT1 upregulation was revealed only at the higher dose of CEF. In addition, CEF has no effect on relapse-like sucrose-drinking behavior. These findings suggest that ceftriaxone might be used as a potential therapeutic treatment for the attenuation of relapse-like ethanol-drinking behavior.
Variation in gut microbiome is associated with wellness and disease in humans, and yet the molecular mechanisms by which this variation affects the host are not well understood. A likely mechanism is that of changing gene regulation in interfacing host epithelial cells. Here, we treated colonic epithelial cells with live microbiota from five healthy individuals and quantified induced changes in transcriptional regulation and chromatin accessibility in host cells. We identified over 5,000 host genes that change expression, including 588 distinct associations between specific taxa and host genes. The taxa with the strongest influence on gene expression alter the response of genes associated with complex traits. Using ATAC-seq, we showed that a subset of these changes in gene expression are associated with changes in host chromatin accessibility and transcription factor binding induced by exposure to gut microbiota. We then created a manipulated microbial community with titrated doses of Collinsella, demonstrating that manipulation of the composition of the microbiome under both natural and controlled conditions leads to distinct and predictable gene expression profiles in host cells. Taken together, our results suggest that specific microbes play an important role in regulating expression of individual host genes involved in human complex traits. The ability to fine-tune the expression of host genes by manipulating the microbiome suggests future therapeutic routes. IMPORTANCE The composition of the gut microbiome has been associated with various aspects of human health, but the mechanism of this interaction is still unclear. We utilized a cellular system to characterize the effect of the microbiome on human gene expression. We showed that some of these changes in expression may be mediated by changes in chromatin accessibility. Furthermore, we validate the role of a specific microbe and show that changes in its abundance can modify the host gene expression response. These results show an important role of gut microbiota in regulating host gene expression and suggest that manipulation of microbiome composition could be useful in future therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.