Since their first description by Ramon y Cajal at the end of the 19th century, dendritic spines have been proposed as important sites of neuronal contacts and it has been suggested that changes in the activity of neurons directly affect spine morphology. In fact, since then it has been shown that about 90% of excitatory synapses end on spines. Recent data indicate that spines are highly dynamic structures and that spine shape correlates with the strength of synaptic transmission. Furthermore, several mental disorders including Alzheimer's disease (AD) are associated with spine pathology suggesting that spine alterations play a central role in mental deficits. The aim of this review is to provide an overview about the current knowledge on spine morphology and function as well as about different experimental models to analyze spine changes and dynamics. The second part concentrates on disease-relevant factors that are associated with AD and which lead to spine alterations. In particular, data that provide evidence that Abeta oligomers or fibrillar Abeta deposits influence spine morphology and function will be presented and the contribution of tau pathology will be discussed. The review ends with the discussion of potential mechanisms how disease-relevant factors influence dendritic spines and whether and how spine changes could be therapeutically suppressed or reversed.
The aim of this study was to investigate the influence of neuronal density on viscoelastic parameters of living brain tissue after ischemic infarction in the mouse using MR elastography (MRE). Transient middle cerebral artery occlusion (MCAO) in the left hemisphere was induced in 20 mice. In vivo 7-T MRE at a vibration frequency of 900 Hz was performed on days 3, 7, 14 and 28 (n = 5 per group) after MCAO, followed by the analysis of histological markers, such as neuron counts (NeuN). MCAO led to a significant reduction in the storage modulus in the left hemisphere relative to contralateral values (p = 0.03) without changes over time. A correlation between storage modulus and NeuN in both hemispheres was observed, with correlation coefficients of R = 0.648 (p = 0.002, left) and R = 0.622 (p = 0.003, right). The loss modulus was less sensitive to MCAO, but correlated with NeuN in the left hemisphere (R = 0.764, p = 0.0001). In agreement with the literature, these results suggest that the shear modulus in the brain is reduced after transient ischemic insult. Furthermore, our study provides evidence that the in vivo shear modulus of brain tissue correlates with neuronal density. In diagnostic applications, MRE may thus have diagnostic potential as a tool for image-based quantification of neurodegenerative processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.