This paper provides an analysis of the combining effect of novel activation function and loss function based on M-estimation in application to extreme learning machine (ELM), a feed-forward neural network. Due to the computational efficiency and classification/prediction accuracy of ELM and its variants, they have been widely exploited in the development of new technologies and applications. However, in real applications, the performance of classical ELMs deteriorates in the presence of outliers, thus, negatively impacting the precision and accuracy of the system. To further enhance the performance of ELM and its variants, we proposed novel activation functions based on the psi function of M and redescend the M-estimation method along with the smooth l 2-norm weight-loss functions to reduce the negative impact of the outliers. The proposed psi functions of several M and redescending M-estimation methods are more flexible to make more distinct features space. For the first time, the idea of the psi function as an activation function in the neural network is introduced in the literature to ensure accurate prediction. In addition, new robust l 2 norm-loss functions based on M and redescending M-estimation are proposed to deal with outliers efficiently in ELM. To evaluate the performance of the proposed methodology against other state-of-the-art techniques, experiments have been performed in diverse environments, which show promising improvements in application to regression and classification problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.