The promising advancements in the telecommunications and automotive sectors over the years have empowered drivers with highly innovative communication and sensing capabilities, in turn paving the way for the next-generation connected and autonomous vehicles. Today, vehicles communicate wirelessly with other vehicles and vulnerable pedestrians in their immediate vicinity to share timely safety-critical information primarily for collision mitigation. Furthermore, vehicles connect with the traffic management entities via their supporting network infrastructure to become more aware of any potential hazards on the roads and for guidance pertinent to their current and anticipated speeds and travelling course to ensure more efficient traffic flows. Therefore, a secure and low-latency communication is highly indispensable in order to meet the stringent performance requirements of such safety-critical vehicular applications. However, the heterogeneity of diverse radio access technologies and inflexibility in their deployment results in network fragmentation and inefficient resource utilization, and these, therefore, act as bottlenecks in realizing the aims for a highly efficient vehicular networking architecture. In order to overcome such sorts of bottlenecks, this article brings forth the current state-of-the-art in the context of intelligent transportation systems (ITS) and subsequently proposes a software-defined heterogeneous vehicular networking (SDHVNet) architecture for ensuring a highly agile networking infrastructure to ensure rapid network innovation on-demand. Finally, a number of potential architectural challenges and their probable solutions are discussed.
The Internet of Things (IoT) is an evolving network of billions of interconnected physical objects, such as, numerous sensors, smartphones, wearables, and embedded devices. These physical objects, generally referred to as the smart objects, when deployed in real-world aggregates useful information from their surrounding environment. As-of-late, this notion of IoT has been extended to incorporate the social networking facets which have led to the promising paradigm of the 'Social Internet of Things' (SIoT). In SIoT, the devices operate as an autonomous agent and provide an exchange of information and services discovery in an intelligent manner by establishing social relationships among them with respect to their owners. Trust plays an important role in establishing trustworthy relationships among the physical objects and reduces probable risks in the decision making process. In this paper, a trust computational model is proposed to extract individual trust features in a SIoT environment. Furthermore, a machine learning-based heuristic is used to aggregate all the trust features in order to ascertain an aggregate trust score. Simulation results illustrate that the proposed trust-based model isolates the trustworthy and untrustworthy nodes within the network in an efficient manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.