The science of solving clinical problems by analyzing images generated in clinical practice is known as medical image analysis. The aim is to extract information in an affective and efficient manner for improved clinical diagnosis. The recent advances in the field of biomedical engineering has made medical image analysis one of the top research and development area. One of the reason for this advancement is the application of machine learning techniques for the analysis of medical images. Deep learning is successfully used as a tool for machine learning, where a neural network is capable of automatically learning features. This is in contrast to those methods where traditionally hand crafted features are used. The selection and calculation of these features is a challenging task. Among deep learning techniques, deep convolutional networks are actively used for the purpose of medical image analysis. This include application areas such as segmentation, abnormality detection, disease classification, computer aided diagnosis and retrieval.
With a widespread use of digital imaging data in hospitals, the size of medical image repositories is increasing rapidly. This causes difficulty in managing and querying these large databases leading to the need of content based medical image retrieval (CBMIR) systems. A major challenge in CBMIR systems is the semantic gap that exists between the low level visual information captured by imaging devices and high level semantic information perceived by human. The efficacy of such systems is more crucial in terms of feature representations that can characterize the high-level information completely. In this paper, we propose a framework of deep learning for CBMIR system by using deep Convolutional Neural Network (CNN) that is trained for classification of medical images. An intermodal dataset that contains twenty four classes and five modalities is used to train the network. The learned features and the classification results are used to retrieve medical images. For retrieval, best results are achieved when class based predictions are used. An average classification accuracy of 99.77% and a mean average precision of 0.69 is achieved for retrieval task. The proposed method is best suited to retrieve multimodal medical images for different body organs.
Recent years have witnessed widespread adoption of machine learning (ML)/deep learning (DL) techniques due to their superior performance for a variety of healthcare applications ranging from the prediction of cardiac arrest from onedimensional heart signals to computer-aided diagnosis (CADx) using multi-dimensional medical images. Notwithstanding the impressive performance of ML/DL, there are still lingering doubts regarding the robustness of ML/DL in healthcare settings (which is traditionally considered quite challenging due to the myriad security and privacy issues involved), especially in light of recent results that have shown that ML/DL are vulnerable to adversarial attacks. In this paper, we present an overview of various application areas in healthcare that leverage such techniques from security and privacy point of view and present associated challenges. In addition, we present potential methods to ensure secure and privacy-preserving ML for healthcare applications. Finally, we provide insight into the current research challenges and promising directions for future research.
With the advancement in artificial intelligence (AI) and machine learning (ML) techniques, researchers are striving towards employing these techniques for advancing clinical practice. One of the key objectives in healthcare is the early detection and prediction of disease to timely provide preventive interventions. This is especially the case for epilepsy, which is characterized by recurrent and unpredictable seizures. Patients can be relieved from the adverse consequences of epileptic seizures if it could somehow be predicted in advance. Despite decades of research, seizure prediction remains an unsolved problem. This is likely to remain at least partly because of the inadequate amount of data to resolve the problem. There have been exciting new developments in ML-based algorithms that have the potential to deliver a paradigm shift in the early and accurate prediction of epileptic seizures. Here we provide a comprehensive review of state-of-the-art ML techniques in early prediction of seizures using EEG signals. We will identify the gaps, challenges, and pitfalls in the current research and recommend future directions.
Generation is often used to explain and rationalize the use of information and communication technologies (ICTs) in higher education. However, a comprehensive review of the research and popular literature on the topic and an empirical study at one postsecondary institution in Canada suggest there are no meaningful generational differences in how learners say they use ICTs or their perceived behavioural characteristics. The study also concluded that the post-secondary students at the institution in question use a limited set of ICTs and their use is driven by three key issues: familiarity, cost, and immediacy. The findings are based on focus group interviews with 69 students and survey responses from a random sample of 438 second year students in 14 different programs in five schools in the institution. The results of this investigation add to a growing body of research that questions the popular view that generation can be used to explain the use of ICTs in higher education.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.