We present in this work the first end-to-end deep learning based method that predicts both 3D hand shape and pose from RGB images in the wild. Our network consists of the concatenation of a deep convolutional encoder, and a fixed model-based decoder. Given an input image, and optionally 2D joint detections obtained from an independent CNN, the encoder predicts a set of hand and view parameters. The decoder has two components: A pre-computed articulated mesh deformation hand model that generates a 3D mesh from the hand parameters, and a re-projection module controlled by the view parameters that projects the generated hand into the image domain. We show that using the shape and pose prior knowledge encoded in the hand model within a deep learning framework yields stateof-the-art performance in 3D pose prediction from images on standard benchmarks, and produces geometrically valid and plausible 3D reconstructions. Additionally, we show that training with weak supervision in the form of 2D joint annotations on datasets of images in the wild, in conjunction with full supervision in the form of 3D joint annotations on limited available datasets allows for good generalization to 3D shape and pose predictions on images in the wild.
We present an approach for estimating surface normals from in-the-wild color images of faces. While datadriven strategies have been proposed for single face images, limited available ground truth data makes this problem difficult. To alleviate this issue, we propose a method that can leverage all available image and normal data, whether paired or not, thanks to a novel cross-modal learning architecture. In particular, we enable additional training with single modality data, either color or normal, by using two encoder-decoder networks with a shared latent space. The proposed architecture also enables face details to be transferred between the image and normal domains, given paired data, through skip connections between the image encoder and normal decoder. Core to our approach is a novel module that we call deactivable skip connections, which allows integrating both the auto-encoded and imageto-normal branches within the same architecture that can be trained end-to-end. This allows learning of a rich latent space that can accurately capture the normal information. We compare against state-of-the-art methods and show that our approach can achieve significant improvements, both quantitative and qualitative, with natural face images.
We propose a method to generate animations using video-based mesh sequences of elementary movements of a shape. New motions that satisfy high-level user-specified constraints are built by recombining and interpolating the frames in the observed mesh sequences. The interest of video based meshes is to provide real full shape information and to enable therefore realistic shape animations. A resulting issue lies, however, in the difficulty to combine and interpolate human poses without a parametric pose model, as with skeleton based animations. To address this issue, our method brings two innovations that contribute at different levels: Locally between two motion sequences, we introduce a new approach to generate realistic transitions using dynamic time warping; More globally, over a set of motion sequences, we propose the essential graph as an efficient structure to encode the most realistic transitions between all pairs of input shape poses. Graph search in the essential graph allows then to generate realistic motions that are optimal with respect to various user-defined constraints. We present both quantitative and qualitative results on various 3D video datasets. They show that our approach compares favourably with previous strategies in this field that use the motion graph.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.