The first model of the iron hydrogenase active site has been prepared which concomitantly carries a proton and a hydride; the title species was characterized by IR and NMR spectroscopy and is reduced at more positive potential than any other mimic of this kind.
Being a major cause of eutrophication and subsequent loss of water quality, the turnover of phosphorus (P) in lake sediments is in need of deeper understanding. A major part of the flux of P to eutrophic lake sediments is organically bound or of biogenic origin. This P is incorporated in a poorly described mixture of autochthonous and allochthonous sediment and forms the primary storage of P available for recycling to the water column, thus regulating lake trophic status. To identify and quantify biogenic sediment P and assess its lability, we analyzed sediment cores from Lake Erken, Sweden, using traditional P fractionation, and in parallel, NaOH extracts were analyzed using 31P NMR. The surface sediments contain orthophosphates (ortho-P) and pyrophosphates (pyro-P), as well as phosphate mono- and diesters. The first group of compounds to disappear with increased sediment depth is pyrophosphate, followed by a steady decline of the different ester compounds. Estimated half-life times of these compound groups are about 10 yr for pyrophosphate and 2 decades for mono- and diesters. Probably, these compounds will be mineralized to ortho-P and is thus potentially available for recycling to the water column, supporting further growth of phytoplankton. In conclusion, 31P NMR is a useful tool to asses the bioavailability of certain P compound groups, and the combination with traditional fractionation techniques makes quantification possible.
A microwave-enhanced, rapid and efficient homogeneous-phase version of the Sonogashira reaction is presented. It has been applied to the coupling of aryl iodides, bromides, triflates, and aryl chloride, as well as pyridine and thiophene derivatives with trimethylsilylacetylene. Excellent yields (80-95%) for substrates containing a large variety of substituents in different positions are obtained in 5-25 min.
Phosphorus (P) binding groups were identified in phytoplankton, settling particles, and sediment profiles by 31 P NMR spectroscopy from the Swedish mesotrophic Lake Erken. The 31 P NMR analysis revealed that polyphosphates and pyrophosphates were abundant in the water column, but rapidly mineralized in the sediment. Orthophosphate monoesters and teichoic acids degraded more slowly than DNA-P, polyphosphates, and P lipids. Humic acids and organic acids from phytoplankton were precipitated from the NaOH extract by acidification and identified by 31 P NMR spectroscopy. The precipitated P was significantly more recalcitrant than the P compound groups remaining in solution, but does not constitute a major sink of P as it did not reach a stable concentration with depth, which indicates that it may eventually be degraded. Since P also precipitated from phytoplankton, the origin of humic-P can not be related solely to allochthonous P.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.