AbstractWe show general lower semicontinuity and relaxation theorems for linear-growth integral functionals defined on vector measures that satisfy linear PDE side constraints (of arbitrary order). These results generalize several known lower semicontinuity and relaxation theorems for BV, BD, and for more general first-order linear PDE side constrains. Our proofs are based on recent progress in the understanding of singularities of measure solutions to linear PDEs and of the generalized convexity notions corresponding to these PDE constraints.
We establish the rectifiability of measures satisfying a linear PDE constraint. The obtained rectifiability dimensions are optimal for many usual PDE operators, including all first-order systems and all secondorder scalar operators. In particular, our general theorem provides a new proof of the rectifiability results for functions of bounded variations (BV) and functions of bounded deformation (BD). For divergence-free tensors we obtain refinements and new proofs of several known results on the rectifiability of varifolds and defect measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.