Interleukin-10 (IL-10) is a critical cytokine used by immune cells to suppress inflammation. Paradoxically, immune cell–derived IL-10 can drive insulin resistance in obesity by suppressing adipocyte energy expenditure and thermogenesis. However, the source of IL-10 necessary for the suppression of adipocyte thermogenesis is unknown. We show here that CD4 + Foxp3 + regulatory T cells (Tregs) are a substantial source of IL-10 and that Treg-derived IL-10 can suppress adipocyte beiging. Unexpectedly, Treg-specific loss of IL-10 resulted in increased insulin sensitivity and reduced obesity in high-fat diet–fed male mice. Mechanistically, we determined that Treg-specific loss of the transcription factor Blimp-1, a driver of IL-10 expression by Tregs, phenocopied the Treg-specific IL-10–deficient mice. Loss of Blimp-1 expression in Tregs resulted in reduced ST2 + KLRG1 + , IL-10-secreting Tregs, particularly in the white adipose tissue. Blimp-1–deficient mice were protected from glucose intolerance, insulin resistance, and diet-induced obesity, through increased white adipose tissue browning. Taken together, our data show that Blimp-1–regulated IL-10 secretion by Tregs represses white adipose tissue beiging to maintain adipose tissue homeostasis.
This article is part of a series of reviews covering Genome Regulation in Innate and Adaptive Immune Cells appearing in Volume 300 of Immunological Reviews.
Adipose regulatory T cells (aTregs) have emerged as critical cells for the control of local and systemic inflammation. In this study, we show a distinctive role for the transcriptional regulator Id2 in the differentiation, survival, and function of aTregs in mice. Id2 was highly expressed in aTregs compared with high Id3 expression in lymphoid regulatory T cells (Tregs). Treg-specific deletion of Id2 resulted in a substantial decrease in aTregs, whereas Tregs in the spleen and lymph nodes were unaffected. Additionally, loss of Id2 resulted in decreased expression of aTreg-associated markers, including ST2, CCR2, KLRG1, and GATA3. Gene expression analysis revealed that Id2 expression was essential for the survival of aTregs, and loss of Id2 increased cell death in aTregs due to increased Fas expression. Id2-mediated aTreg depletion resulted in increased systemic inflammation, increased inflammatory macrophages and CD8 + effector T cells, and loss of glucose tolerance under standard diet conditions. Thus, we reveal an unexpected and novel function for Id2 in mediating differentiation, survival, and function of aTregs that when lost result in increased metabolic perturbation.
Invariant natural killer T (iNKT) cells are adaptive T cells with innate-like characteristics including rapid cytokine production and a proliferative response to stimulation. Development of these cells in the thymus is dependent on expression of the microRNA (miRNA) processing enzyme Dicer, indicating that iNKT cells probably have distinct miRNA requirements for gene regulation during development. The miRNA miR-155 has previously been shown to have numerous roles in T cells, including regulation of proliferation and differentiation, and positive modulation of interferon-γ expression. We examined the role of miR-155 in the development and function of iNKT cells. Using germline-deficient miR-155 mice, we showed that loss of miR-155 resulted in unchanged iNKT cell frequency and cell number. Although miR-155 was up-regulated in iNKT cells upon activation with α-galactosylceramide, loss of miR-155 did not affect cytokine production or proliferation by iNKT cells. Hence, cytokine production occurs in iNKT cells independently of miR-155 expression.
Adipose regulatory T cells (aTregs) have emerged as critical cells for the control of local and systemic inflammation. In this study, we show a distinctive role for the transcriptional regulator Id2 in the differentiation, survival and function of aTregs. Id2 was highly expressed in aTregs compared with high Id3 expression in lymphoid Tregs. Treg-specific deletion of Id2 resulted in a substantial decrease in aTregs, while Tregs in the spleen and lymph nodes were unaffected. Additionally, loss of Id2 resulted in decreased expression of aTreg associated markers including ST2, CCR2, KLRG1 and GATA3. Gene expression analysis revealed that Id2 expression was essential for the survival of aTregs and loss of Id2 increased cell death in aTregs due to increased Fas expression. Id2-mediated aTreg depletion resulted in increased systemic inflammation, increased inflammatory macrophages and CD8 + effector T cells and loss of glucose tolerance under standard diet conditions. Thus, we reveal an unexpected and novel function for Id2 in mediating differentiation, survival and function of adipose-resident Tregs, that when lost resulting in increased metabolic perturbation.3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.