Background Patients with cancer have been shown to have a higher risk of clinical severity and mortality compared to non-cancer patients with COVID-19. Patients with hematologic malignancies typically are known to have higher levels of immunosuppression and may develop more severe respiratory viral infections than patients with solid tumors. Data on COVID-19 in patients with hematologic malignancies are limited. Here we characterize disease severity and mortality and evaluate potential prognostic factors for mortality. Methods In this population-based registry study, we collected de-identified data on clinical characteristics, treatment and outcomes in adult patients with hematologic malignancies and confirmed severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection within the Madrid region of Spain. Our case series included all patients admitted to 22 regional health service hospitals and 5 private healthcare centers between February 28 and May 25, 2020. The primary study outcome was all-cause mortality. We assessed the association between mortality and potential prognostic factors using Cox regression analyses adjusted for age, sex, comorbidities, hematologic malignancy and recent active cancer therapy. Results Of 833 patients reported, 697 were included in the analyses. Median age was 72 years (IQR 60–79), 413 (60%) patients were male and 479 (69%) and 218 (31%) had lymphoid and myeloid malignancies, respectively. Clinical severity of COVID-19 was severe/critical in 429 (62%) patients. At data cutoff, 230 (33%) patients had died. Age ≥ 60 years (hazard ratios 3.17–10.1 vs < 50 years), > 2 comorbidities (1.41 vs ≤ 2), acute myeloid leukemia (2.22 vs non-Hodgkin lymphoma) and active antineoplastic treatment with monoclonal antibodies (2·02) were associated with increased mortality; conventional chemotherapy showed borderline significance (1.50 vs no active therapy). Conversely, Ph-negative myeloproliferative neoplasms (0.33) and active treatment with hypomethylating agents (0.47) were associated with lower mortality. Overall, 574 (82%) patients received antiviral therapy. Mortality with severe/critical COVID-19 was higher with no therapy vs any antiviral combination therapy (2.20). Conclusions In this series of patients with hematologic malignancies and COVID-19, mortality was associated with higher age, more comorbidities, type of hematological malignancy and type of antineoplastic therapy. Further studies and long-term follow-up are required to validate these criteria for risk stratification.
Several factors hinder the identification of risk factors for central nervous system (CNS) involvement in diffuse large B-cell lymphoma (DLBCL), including the retrospective nature of most studies, the relatively low frequency of CNS relapse in DLBCL, and the heterogeneity of CNS prophylaxis methods used in these studies. Moreover, the impact of newly developed diagnostic tools (such as multiparameter flow cytometry [FCM]) and new treatments introduced in the last decade, in particular rituximab, has still not been fully clarified.Several studies 4,5,[7][8][9][10] and a recent meta-analysis 1 have described a decrease in rates D iffuse large B-cell lymphoma patients have a 5% overall risk of central nervous system events (relapse or progression), which account for high morbidity and frequently fatal outcomes, 1 and shortened overall survival of <6 months.2 Early diagnosis of central nervous system events is critical for successful treatment and improved prognosis. Identification of patients at risk of central nervous system disease is critical to accurately identify candidates for central nervous system prophylaxis vs. therapy. [3][4][5] This report by the Spanish Lymphoma Group (GELTAMO) aims to provide useful guidelines and recommendations for the prevention, diagnosis, and treatment of central nervous system diffuse large B-cell lymphoma patients with, or at risk of, leptomeningeal and/or brain parenchyma lymphoma relapse. A panel of lymphoma experts working on behalf of GELTAMO reviewed all data published on these topics available in PubMed up to May 2016. Recommendations were classified according to the Grading of Recommendations Assessment Development and Evaluation (GRADE) approach. 6 A practical algorithm based on the proposed recommendations was then developed (Figure 1 have concluded that the incidence of CNS relapse decreased after the introduction of rituximab (Table 1). The identification of risk factors has been the major goal of many studies of CNS involvement. Several large retrospective studies conducted in the pre-rituximab era [12][13][14][15] reported higher rates of CNS relapse in patients with increased serum lactate dehydrogenase (LDH) levels and/or involvement of >1 extranodal site, although these factors failed to predict CNS relapse in more than half of all cases.12 In addition to the involvement of >1 extranodal site and increased LDH, International Prognostic Index (IPI) score was also identified as an independent predictor for CNS relapse in other studies.13,16 A post-rituximab era study of 399 DLBCL patients, randomized to R-CHOP or CHOP chemotherapy, 3 identified an age-adjusted IPI (aaIPI) >1 as the only risk factor for CNS involvement, although a high aaIPI score was recorded for more than 60% of the patients. When aaIPI was excluded from the analysis, elevated LDH and a poor performance status (PS >1) were identified as independent predictive factors for CNS relapse. Similarly, in the randomized RICOVER-60 trial, 4 the combination of increased LDH levels, the involvement of >1 ex...
We hypothesize that the use of the individual patient ex vivo pharmacological profiles may help to guide a personalized treatment selection.
Background Patients with cancer have been shown to have a higher risk of clinical severity and mortality compared to non-cancer patients with COVID-19. Patients with hematologic malignancies typically are known to have higher levels of immunosuppression and may develop more severe respiratory viral infections than patients with solid tumours. Data on COVID-19 in patients with hematologic malignancies are limited. Here we characterise disease severity and mortality, and evaluate potential prognostic factors for mortality.Methods In this population-based registry study, we collected de-identified data on clinical characteristics, treatment and outcomes in adult patients with hematologic malignancies and confirmed severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection within the Madrid region of Spain. Our case series included all patients admitted to 22 regional health service hospitals and 5 private healthcare centres between February 28 and May 25, 2020. The primary study outcome was all-cause mortality. We assessed the association between mortality and potential prognostic factors using Cox regression analyses adjusted for age, sex, comorbidities, hematologic malignancy and recent active cancer therapy.Results Of 833 patients reported, 697 were included in the analyses. Median age was 72 years (IQR 60–79), 413 (60%) patients were male, and 479 (69%) and 218 (31%) had lymphoid and myeloid malignancies, respectively. Clinical severity of COVID-19 was severe/critical in 429 (62%) patients. At data cutoff, 230 (33%) patients had died. Age ≥60 years (hazard ratios 3·17–10·1 vs <50 years), >2 comorbidities (1·41 vs ≤2), acute myeloid leukemia (2·22 vs non-Hodgkin lymphoma) and active antineoplastic treatment with monoclonal antibodies (2·02) or conventional chemotherapy (1·50 vs no active therapy) were associated with increased mortality. Conversely, Ph-negative myeloproliferative neoplasms (0·33) and active treatment with hypomethylating agents (0·47) were associated with lower mortality. Overall, 574 (82%) patients received antiviral therapy. Mortality with severe/critical COVID-19 was higher with no therapy vs any antiviral combination therapy (2.20).Conclusions In this series of patients with hematologic malignancies and COVID-19, mortality was associated with higher age, more comorbidities, type of hematological malignancy and type of antineoplastic therapy. Further studies and long-term follow-up are required to validate these criteria for risk-stratification.
PURPOSE The need for an individualized management of indolent clinical forms in mantle cell lymphoma (MCL) is increasingly recognized. We hypothesized that a tailored treatment with ibrutinib in combination with rituximab (IR) could obtain significant responses in these patients. METHODS This is a multicenter single-arm, open-label, phase II study with a two-stage design conducted in 12 Spanish GELTAMO sites (ClinicalTrials.gov identifier: NCT02682641 ). Previously untreated MCL patients with indolent clinical forms defined by the following criteria were eligible: no disease-related symptoms, nonblastoid variants, Ki-67 < 30%, and largest tumor diameter ≤ 3 cm. Both leukemic non-nodal and nodal subtypes were recruited. Patients received ibrutinib 560 mg once daily and a total of eight doses of rituximab 375 mg/m2. Ibrutinib could be discontinued after 2 years in the case of sustained undetectable minimal residual disease (MRD). The primary end point was the complete response (CR) rate achieved after 12 cycles according to Lugano criteria. RESULTS Fifty patients with MCL (male 66%; median age 65 years) were enrolled. After 12 cycles of treatment, 42 (84%; 95% CI, 74 to 94) patients had an overall response, including 40 (80%; 95% CI, 69 to 91) with CR. Moreover, undetectable MRD in peripheral blood was achieved in 87% (95% CI, 77 to 97) of cases. At 2 years, 24 of 35 evaluable patients (69%) could discontinue ibrutinib because of undetectable MRD. Four patients had disease progression; three were non-nodal MCL and carried high genomic complexity and TP53 mutations at enrollment. No unexpected toxicity was seen except one patient with severe aplastic anemia. CONCLUSION Frontline IR combination achieves a high rate of CRs and undetectable MRD in indolent clinical forms of MCL. Discontinuation seems appropriate in cases with undetectable MRD, except for TP53-mutated cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.