The timing of transitions between life history stages should be affected by factors that influence survival and growth of organisms in adjacent life history stages. In a series of laboratory experiments, we examined the influence of predation risk as a cue to trigger a life history switch in amphibians. In the Oregon Cascade Mountains, some populations of Pacific treefrogs (Hyla regilla) and Cascades frogs (Ranacascadae) are under intense egg predation by predatory leeches (families Glossiphonidae and Erpobdellidae). We document that both treefrogs and Cascades frogs show plasticity in hatching characteristics in response to the threat of egg predation. Pacific treefrogs hatch sooner and at an earlier developmental stage when either predatory leeches or non‐predatory earthworms are allowed direct contact with the developing egg mass. The same response is elicited even without direct contact. Chemical cues of predatory leeches and chemicals released from injured eggs appear to elicit the same early hatching response in treefrogs. For Cascades frogs, cues of leeches, but not those of injured eggs, elicit an early hatching response. Hatching early in response to egg predators may reduce predation. Plasticity of hatching characteristics has rarely been examined. However, we suspect that it may be common, particularly in populations or species that experience high variability in predation pressure between years.
Nascent fungal infections are currently considered as one of the main threats for biodiversity and ecosystem health, and have driven several animal species into critical risk of extinction. Sea turtles are one of the most endangered groups of animals and only seven species have survived to date. Here, we described two pathogenic species, i.e., Fusarium falciforme and Fusarium keratoplasticum, that are globally distributed in major turtle nesting areas for six sea turtle species and that are implicated in low hatch success. These two fungi possess key biological features that are similar to emerging pathogens leading to host extinction, e.g., high virulence, and a broad host range style of life. Their optimal growth temperature overlap with the optimal incubation temperature for eggs, and they are able to kill up to 90% of the embryos. Environmental forcing, e.g., tidal inundation and clay/silt content of nests, were correlated to disease development. Thus, these Fusarium species constitute a major threat to sea turtle nests, especially to those experiencing environmental stressors. These findings have serious implications for the survival of endangered sea turtle populations and the success of conservation programs worldwide.
The Cape Verde Islands harbour the second largest nesting aggregation of the globally endangered loggerhead sea turtle in the Atlantic. To characterize the unknown genetic structure, connectivity, and demographic history of this population, we sequenced a segment of the mitochondrial (mt) DNA control region (380 bp, n = 186) and genotyped 12 microsatellite loci (n = 128) in females nesting at three islands of Cape Verde. No genetic differentiation in either haplotype or allele frequencies was found among the islands (mtDNA F ST = 0.001, P [ 0.02; nDNA F ST = 0.001, P [ 0.126). However, population pairwise comparisons of the mtDNA data revealed significant differences between Cape Verde and all previously sequenced Atlantic and Mediterranean rookeries (F ST = 0.745; P \ 0.000). Results of a mixed stock analysis of mtDNA data from 10 published oceanic feeding grounds showed that feeding grounds of the Madeira, Azores, and the Canary Islands, in the Atlantic Ocean, and Gimnesies, Pitiü ses, and Andalusia, in the Mediterranean sea, are feeding grounds used by turtles born in Cape Verde, but that about 43% (±19%) of Cape Verde juveniles disperse to unknown areas. In a subset of samples (n = 145) we evaluated the utility of a longer segment (*760 bp) amplified by recently designed mtDNA control region primers for assessing the genetic structure of Atlantic loggerhead turtles. The analysis of the longer
Abstract-In static experiments, we studied the effects of nitrate and nitrite solutions on newly hatched larvae of five species of amphibians, namely Rana pretiosa, Rana aurora, Bufo boreas, Hyla regilla, and Ambystoma gracile. When nitrate or nitrite ions were added to the water, some larvae of some species reduced feeding activity, swam less vigorously, showed disequilibrium and paralysis, suffered abnormalities and edemas, and eventually died. The observed effects increased with both concentration and time, and there were significant differences in sensitivity among species. Ambrystoma gracile displayed the highest acute effect in water with nitrate and nitrite. The three ranid species had acute effects in water with nitrite. In chronic exposures, R. pretiosa was the most sensitive species to nitrates and nitrites. All species showed 15-d LC50s lower than 2 mg N-NO 2 -/L. For both N ions, B. boreas was the least sensitive amphibian. All species showed a high mortality at the U.S. Environmental Protection Agencyrecommended limits of nitrite for warm-water fishes (5 mg N-NO 2 -/L) and a significant larval mortality at the recommended limits of nitrite concentration for drinking water (1 mg N-NO 2 -/L). The recommended levels of nitrate for warm-water fishes (90 mg N-NO 3 -/L) were highly toxic for R. pretiosa and A. gracile larvae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.