Recombination is the exchange of information between two homologous chromosomes during meiosis. The rate of recombination per nucleotide, which profoundly affects the evolution of chromosomal segments, is calculated by comparing genetic and physical maps. Human physical maps have been constructed using cytogenetics, overlapping DNA clones and radiation hybrids; but the ultimate and by far the most accurate physical map is the actual nucleotide sequence. The completion of the draft human genomic sequence provides us with the best opportunity yet to compare the genetic and physical maps. Here we describe our estimates of female, male and sex-average recombination rates for about 60% of the genome. Recombination rates varied greatly along each chromosome, from 0 to at least 9 centiMorgans per megabase (cM Mb(-1)). Among several sequence and marker parameters tested, only relative marker position along the metacentric chromosomes in males correlated strongly with recombination rate. We identified several chromosomal regions up to 6 Mb in length with particularly low (deserts) or high (jungles) recombination rates. Linkage disequilibrium was much more common and extended for greater distances in the deserts than in the jungles.
Although triplet repeat DNA sequences are scattered throughout the human genome, their biological function remains obscure. To aid in correlating potential structures of these nucleic acids with their function, we propose their classification based on the presence or absence of a palindromic dinucleotide within the triplet, the G + C content, and the presence or absence of a homopolymer. Five classes of double-stranded (ds) triplet repeats are distinguished. Class I repeats, which are defined by the presence of a GC or CG palindrome, have the lowest base stacking energies, exhibit the lowest rates of slippage synthesis [Schlötterer and Tautz (1992) Nucleic Acids Res., 20, 211] and are uniquely associated with triplet repeat expansion diseases. The six single-stranded (ss) triplet repeats within Class I also have the potential to form hairpin structures, as determined by energy minimization. To explore the possibility of hairpin formation by ss Class I triplet repeats, studies were performed with a ss oligonucleotide containing 15 prototypic CTG repeats [ss (CTG)15]. Electrophoretic, P1 nuclease and KMnO4 oxidation data demonstrate that ss (CTG)15 forms a hairpin containing base paired and/or stacked thymines in the stem. Potential functions of hairpins containing Class I triplet repeats are discussed with respect to protein translation and mRNA splicing. Further, potential roles of hairpin structures in triplet repeat expansion events are discussed.
To investigate potential structures of d(CGG/CCG)n that might relate to their biological function and association with triplet repeat expansion diseases (TREDs), electrophoretic mobility, chemical modification, and P1 nuclease studies were performed with a single-stranded (ss) oligonucleotide containing (CGG)15 [ss(CGG)15]. The results suggest that ss(CGG)15 forms a hairpin with the following features: (i) a stem containing Gsyn. Ganti base pairs; (ii) at > or = 200 mM K+, CGG repeats on the 5' portion of the stem base-paired to GCG repeats on the 3' side (referred to as the (b) alignment); and (iii) heat stability (Tm = 75 degrees C in low ionic strength). At < or = 100 mM K+, dimethyl sulfate reactions indicated that the hairpin in the (b) alignment was in equilibrium with another structure, presumably a hairpin in the alternative (a) alignment (CGG repeats on the 5' portion of the stem base-paired to CGG repeats on the 3' portion of the stem). Molecular dynamics simulations suggested that the loop region of the (a) alignment contained two guanines stacked on top of one another. The same guanines in the (b) alignment were base-paired in a syn-anti arrangement. We propose that the stability of the loop partially determines the stem alignment.
Infection by adenovirus 12, transfection with the Ad12 E1B 55 kDa gene, or activation of p53 cause metaphase fragility of four loci (RNU1, PSU1, RNU2, and RN5S) each containing tandemly repeated genes for an abundant small RNA (U1, U2, and 5S RNA). We now show that loss of the Cockayne syndrome group B protein (CSB) or overexpression of the p53 carboxy-terminal domain induces fragility of the same loci; moreover, p53 interacts with CSB in vivo and in vitro. We propose that CSB functions as an elongation factor for transcription of structured RNAs, including some mRNAs. Activation of p53 would inhibit CSB, stalling transcription complexes and locally blocking chromatin condensation. Impaired transcription elongation may also explain the diverse clinical features of Cockayne syndrome.
To investigate potential structures of d(CGG/CCG)n that might relate to their biological function and association with triplet repeat expansion diseases (TREDs), the structure of a single-stranded (ss) oligonucleotide containing d(CCG)15 [ss(CCG)15] was examined by studies of the pH and temperature dependence of electrophoretic mobility, UV absorbance, circular dichroism, chemical modification, and P1 nuclease digestion. ss(CCG)15 had an unusually high pKa (7.7 +/- 0.2). At pH 8.5, ss(CCG)15 formed a relatively unstable (Tm = 30 degrees C in 1 mM Na+) hairpin containing CpG base-pair steps. At pH 7.5, the hairpin contained protonated cytosines but no detectable C x +C base pairs, increased thermal stability (Tm = 37 degrees C), increased stacking of the CpG base-pair steps, and a single cytosine that was flipped away from the central portion of the helix. Examination of ss(CCG)18 and ss(CCG)20, which were designed to adopt hairpins containing alternative GpC base-pair steps, revealed hairpins containing CpG base-pair steps, pKas of approximately 8.2 and approximately 8.4, respectively, and distorted helices. The results suggest that DNA sequences containing (CCG)(n > or = 15) adopt hairpin conformations that contain CpG rather than GpC base-pair steps; the mismatched cytosines are protonated at physiological pH but are not H-bonded. We propose that protonation arises from the stacking of two cytosines in the minor groove of a distorted helix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.