The nature of mutations occurring in two colorectal carcinoma cell lines deficient in mismatch repair and displaying mutator phenotypes was determined. One of the lines (HCT116) exhibited a higher level of microsatellite instability than the second (DLD-1), although the rate of mutation at the selectable locus encoding the purine salvage enzyme hypoxanthine guanine phosphoribosyl transferase (HPRT) was equally elevated (about 350-450-fold relative to mismatch repair proficient cell lines). Transitions were the major class of mutations in the two mutator lines. In DLD-1 these mutations recurred at several sites that appeared to be hotspots. Frameshifts at a run of six guanine residues in the coding sequence for HPRT constituted 35% of mutations in HCT116. These frameshifts were highly unstable and reverted to wild type at high frequency. Larger deletions were also detected in HCT116. Although these deletions constituted a small proportion of mutations compared with the other types, our data suggest that the rate of deletion is elevated relative to mismatch repair proficient (hMLH1+) cell lines. These observations suggest that the gene(s) altered in DLD-1 may preferentially affect the repair of base mismatches while the alteration(s) in HCT116 may affect the repair of both mismatches and frameshifts.
The majority of human genes generate mRNA splice variants and while there is little doubt that alternative splicing is an important biological phenomenon, it has also become apparent that some splice variants are associated with disease. To elucidate the molecular mechanisms responsible for generating aberrant splice variants, we have investigated alternative splicing of the human genes HPRT and POLB following oxidative stress in different genetic backgrounds. Our study revealed that splicing fidelity is sensitive to oxidative stress. Following treatment of cells with H2O2, the overall frequency of aberrant, unproductive splice variants increased in both loci. At least in POLB, splicing fidelity is p53 dependent. In the absence of p53, the frequency of POLB splice variants is elevated but oxidative stress does not further increase the frequency of splice variants. Our data indicate that mis-splicing following oxidative stress represents a novel and significant genotoxic outcome and that it is not simply DNA lesions induced by oxidative stress that lead to mis-splicing but changes in the alternative splicing machinery itself.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.