Virtual screening consists of using computational tools to predict potentially bioactive compounds from files containing large libraries of small molecules. Virtual screening is becoming increasingly popular in the field of drug discovery as in silico techniques are continuously being developed, improved, and made available. As most of these techniques are easy to use, both private and public organizations apply virtual screening methodologies to save resources in the laboratory. However, it is often the case that the techniques implemented in virtual screening workflows are restricted to those that the research team knows. Moreover, although the software is often easy to use, each methodology has a series of drawbacks that should be avoided so that false results or artifacts are not produced. Here, we review the most common methodologies used in virtual screening workflows in order to both introduce the inexperienced researcher to new methodologies and advise the experienced researcher on how to prevent common mistakes and the improper usage of virtual screening methodologies.
Since the outbreak of the COVID-19 pandemic in December 2019 and its rapid spread worldwide, the scientific community has been under pressure to react and make progress in the development of an effective treatment against the virus responsible for the disease. Here, we implement an original virtual screening (VS) protocol for repositioning approved drugs in order to predict which of them could inhibit the main protease of the virus (M-pro), a key target for antiviral drugs given its essential role in the virus’ replication. Two different libraries of approved drugs were docked against the structure of M-pro using Glide, FRED and AutoDock Vina, and only the equivalent high affinity binding modes predicted simultaneously by the three docking programs were considered to correspond to bioactive poses. In this way, we took advantage of the three sampling algorithms to generate hypothetic binding modes without relying on a single scoring function to rank the results. Seven possible SARS-CoV-2 M-pro inhibitors were predicted using this approach: Perampanel, Carprofen, Celecoxib, Alprazolam, Trovafloxacin, Sarafloxacin and ethyl biscoumacetate. Carprofen and Celecoxib have been selected by the COVID Moonshot initiative for in vitro testing; they show 3.97 and 11.90% M-pro inhibition at 50 µM, respectively.
A complete description of the software is included on the application home page. A validation of DecoyFinder on 10 DUD targets is provided as Supplementary Table S1. DecoyFinder is freely available at http://URVnutrigenomica-CTNS.github.com/DecoyFinder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.