The purpose of this report is to present the Crossdock Door Assignment Problem, which involves assigning destinations to outbound dock doors of Crossdock centres such that travel distance by material handling equipment is minimized. We propose a two fold solution; simulation and optimization of the simulation model -simulation optimization. The novel aspect of our solution approach is that we intend to use simulation to derive a more realistic objective function and use Memetic algorithms to find an optimal solution. The main advantage of using Memetic algorithms is that it combines a local search with Genetic Algorithms. The Crossdock Door Assignment Problem is a new domain application to Memetic Algorithms and it is yet unknown how it will perform.
This paper investigates the reduction of variance associated with a simulation output performance measure, using the Sequential Sampling method while applying minimum simulation replications, for a class of JIT (Just in Time) warehousing system called crossdocking. We initially used the Sequential Sampling method to attain a desired 95% confidence interval half width of ± 0.5 for our chosen performance measure (Total usage cost, given the mean maximum level of £157,000 and a mean minimum level of £149,000). From our results, we achieved a 95% confidence interval half width of ± 2.8 for our chosen performance measure (Total usage cost, with an average mean value of £115,000). However, the Sequential Sampling method requires a huge number of simulation replications to reduce variance for our simulation output value to the target level. Arena® (version 11) simulation software was used to conduct this study.
Variance reduction techniques have been shown by others in the past to be a useful tool to reduce variance in Simulation studies. However, their application and success in the past has been mainly domain specific, with relatively little guidelines as to their general applicability, in particular for novices in this area. To facilitate their use, this study aims to investigate the robustness of individual techniques across a set of scenarios from different domains. Experimental results show that Control Variates is the only technique which achieves a reduction in variance across all domains. Furthermore, applied individually, Antithetic Variates and Control Variates perform particularly well in the Cross-docking scenarios, which was previously unknown.
This paper reports on continuing research into the modelling of an order picking process within a Crossdocking distribution centre using Simulation Optimisation. The aim of this project is to optimise a discrete event simulation model and to understand factors that affect finding its optimal performance. Our initial investigation revealed that the precision of the selected simulation output performance measure and the number of replications required for the evaluation of the optimisation objective function through simulation influences the ability of the optimisation technique. We experimented with Common Random Numbers, in order to improve the precision of our simulation output performance measure, and intended to use the number of replications utilised for this purpose as the initial number of replications for the optimisation of our Crossdocking distribution centre simulation model. Our results demonstrate that we can improve the precision of our selected simulation output performance measure value using Common Random Numbers at various levels of replications. Furthermore, after optimising our Crossdocking distribution centre simulation model, we are able to achieve optimal performance using fewer simulations runs for the simulation model which uses Common Random Numbers as compared to the simulation model which does not use Common Random Numbers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.