We present a method for finding the hierarchy of rational solutions of the self-focusing nonlinear Schrödinger equation and present explicit forms for these solutions from first to fourth order. We also explain their relation to the highest amplitude part of a field that starts with a plane wave perturbed by random small amplitude radiation waves. Our work can elucidate the appearance of rogue waves in the deep ocean and can be applied to the observation of rogue light pulse waves in optical fibers.
We propose initial conditions that could facilitate the excitation of rogue waves. Understanding the initial conditions that foster rogue waves could be useful both in attempts to avoid them by seafarers and in generating highly energetic pulses in optical fibers.
The Hirota equation is a modified nonlinear Schrödinger equation (NLSE) that takes into account higher-order dispersion and time-delay corrections to the cubic nonlinearity. In describing wave propagation in the ocean and optical fibers, it can be viewed as an approximation which is more accurate than the NLSE. We have modified the Darboux transformation technique to show how to construct the hierarchy of rational solutions of the Hirota equation. We present explicit forms for the two lower-order solutions. Each one is a regular (nonsingular) rational solution with a single maximum that can describe a rogue wave in this model. Numerical simulations reveal the appearance of these solutions in a chaotic field generated from a perturbed continuous wave solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.