It is well known that different solution strategies work well for different types of instances of hard combinatorial problems. As a consequence, most solvers for the propositional satisfiability problem (SAT) expose parameters that allow them to be customized to a particular family of instances. In the international SAT competition series, these parameters are ignored: solvers are run using a single default parameter setting (supplied by the authors) for all benchmark instances in a given track. While this competition format rewards solvers with robust default settings, it does not reflect the situation faced by a practitioner who only cares about performance on one particular application and can invest some time into tuning solver parameters for this application. The new Configurable SAT Solver Competition (CSSC) compares solvers in this latter setting, scoring each solver by the performance it achieved after a fully automated configuration step. This article describes the CSSC in more detail, and reports the results obtained in its two instantiations so far, CSSC 2013 and 2014.
Abstract. The design, execution and analysis of experiments using heuristic algorithms can be a very time consuming task in the development of an algorithm. There are a lot of problems that have to be solved throughout this process. To speed up this process we have designed and implemented a framework called EDACC, which supports all the tasks that arise throughout the experimentation with algorithms. A graphical user interface together with a database facilitates archiving and management of solvers and problem instances. It also enables the creation of complex experiments and the generation of the computation jobs needed to perform the experiment. The task of running the jobs on an arbitrary computer system (or computer cluster or grid) is taken by a compute client, which is designed to increase computation throughput to a maximum. Real-time monitoring of running jobs can be done with the GUI or with a web frontend, both of which provide a wide variety of descriptive statistics and statistic testing to analyze the results. The web frontend also provides all the tools needed for the organization and execution of solver competitions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.