Lung cancer is one of the most deadly and common cancers in the world. The molecular features of patient’s tumours dictate the different therapeutic decisions, which combines targeted therapy, chemotherapy, and immunotherapy. Altered cellular metabolism is one of the hallmarks of cancer. Tumour cells reprogram their metabolism to adapt to their novel requirements of growth, proliferation, and survival. Together with the Warburg effect, the role of lipid metabolism alterations in cancer development and prognosis has been highlighted. Several lipid related genes have been shown to promote transformation and progression of cancer cells and have been proposed as biomarkers for prognosis. Nevertheless, the exact mechanisms of the regulation of lipid metabolism and the biological consequences in non-small cell lung cancer (NSCLC) have not been elucidated yet. There is an urgent necessity to develop multidisciplinary and complementary strategies to improve NSCLC patients´ well-being and treatment response. Nutrients can directly affect fundamental cellular processes and some diet-derived ingredients, bioactive natural compounds and natural extracts have been shown to inhibit the tumour growth in preclinical and clinical trials. Previously, we described a supercritical extract of rosemary (SFRE) (12 - 16% composition of phenolic diterpenes carnosic acid and carnosol) as a potential antitumoral agent in colon and breast cancer due to its effects on the inhibition of lipid metabolism and DNA synthesis, and in the reduction of resistance to 5-FluoroUracil (5-FU). Herein, we demonstrate SFRE inhibits NSCLC cell bioenergetics identifying several lipid metabolism implicated targets. Moreover, SFRE synergises with standard therapeutic drugs used in the clinic, such as cisplatin, pemetrexed and pembrolizumab to inhibit of cell viability of NSCLC cells. Importantly, the clinical relevance of SFRE as a complement in the treatment of NSCLC patients is suggested based on the results of a pilot clinical trial where SFRE formulated with bioactive lipids (PCT/ES2017/070263) diminishes metabolic and inflammatory targets in peripheral-blood mononuclear cells (PBMC), such as MAPK (p=0.04), NLRP3 (p=0.044), and SREBF1 (p=0.047), which may augment the immune antitumour function. Based on these results, SFRE merits further investigation as a co-adjuvant in the treatment of NSCLC.Clinical trial registrationClinicalTrials.gov Identifier NCT05080920
Saponins or their aglycone form, sapogenin, have recently gained interest as bioactive agents due to their biological activities, their antitumoral effects being among them. Metabolic reprogramming has been recognized as a hallmark of cancer and, together with the increased aerobic glycolysis and glutaminolysis, the altered lipid metabolism is considered crucial to support cancer initiation and progression. The purpose of this study was to assess and compare the inhibitory effects on colorectal cancer cell lines of saponin-rich extracts from fenugreek and quinoa (FE and QE, respectively) and their hydrolyzed extracts as sapogenin-rich extracts (HFE and HQE, respectively). By mean of the latest technology in the analysis of cell bioenergetics, we demonstrate that FE and HFE diminished mitochondrial oxidative phosphorylation and aerobic glycolysis; meanwhile, quinoa extracts did not show relevant activities. Distinct molecular mechanisms were identified for fenugreek: FE inhibited the expression of TYMS1 and TK1, synergizing with the chemotherapeutic drug 5-fluorouracil (5-FU); meanwhile, HFE inhibited lipid metabolism targets, leading to diminished intracellular lipid content. The relevance of considering the coexisting compounds of the extracts or their hydrolysis transformation as innovative strategies to augment the therapeutic potential of the extracts, and the specific subgroup of patients where each extract would be more beneficial, are discussed in the frame of precision nutrition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.