The dermal layers of several elasmobranch species have been shown to be sexually dimorphic. Generally, when this occurs the females have thicker dermal layers compared to those of males. This sexual dimorphism has been suggested to occur as a response to male biting during mating. Although male biting as a copulatory behaviour in Scyliorhinus canicula has been widely speculated to occur, only relatively recently has this behaviour been observed. Male S. canicula use their mouths to bite the female’s pectoral and caudal fins as part of their pre-copulatory behaviour and to grasp females during copulation. Previous work has shown that female S. canicula have a thicker epidermis compared to that of males. The structure of the dermal denticles in females may also differ from that of males in order to protect against male biting or to provide a greater degree of friction in order to allow the male more purchase. This study reveals that the length, width and density of the dermal denticles of mature male and female S. canicula are sexually dimorphic across the integument in areas where males have been observed to bite and wrap themselves around females (pectoral fin, area posterior to the pectoral fin, caudal fin, and pelvic girdle). No significant differences in the dermal denticle dimensions were found in other body areas examined (head, dorsal skin and caudal peduncle). Sexually dimorphic dermal denticles in mature S. canicula could be a response to male biting/wrapping as part of the copulatory process.
The prevalence of pharmaceuticals and personal care products (PPCPs) in lotic habitats is increasing, with the main source of these contaminants being effluent from waste water treatment works (WwTW). There is still much uncertainty about the impacts of these PPCPs at environmentally relevant concentrations and their potential effects on aquatic ecology. Behaviour is a sensitive endpoint which can help evaluate possible population levels effects from changes in physiology. This paper evaluates the effects of WwTW effluent on a range of behaviours in the freshwater invertebrate, Gammarus pulex. Effluent taken from the outflow of two WwTW in southern England was used in the study.Behavioural analyses, namely feeding rate, phototaxis, activity, velocity and precopula pairing, were measured in G. pulex following a period of one and three weeks after exposure to a 50% or 100% effluent and a control. Mortality remained very low throughout the 3 week experiment (0-10%, n = 20) and no significant changes in moulting frequency were observed (p > 0.05). No significant effects on feeding or velocity or phototaxis following 3 weeks of effluent exposures were observed (p > 0.05). However, significant reductions were observed in the overall activity over 3 weeks across which appeared to be exacerbated by exposure to effluents. Interestingly, males exposed for 3 weeks to WwTW effluent re-paired with unexposed females significantly faster (4-6x) than control animals. This result was consistent between the effluents taken from the two WwTW. The implications of these behavioural changes are currently unknown but highlight the need for a varied set of tools to study the behavioural changes in wildlife. Capsule:The effects of wastewater effluent on the multiple behaviours in the riverine amphipod, Gammarus pulex. Study surprisingly finds very little effects on activity-based behaviours but does find effects of reproductive behaviours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.