Lead-halide perovskites offer excellent properties for lighting and display applications. Nanopatterning perovskite films could enable perovskite-based devices with designer properties, increasing their performance and adding novel functionalities. We demonstrate the potential of nanopatterning for achieving light emission of a perovskite film into a specific angular range by introducing periodic sol−gel structures between the injection and emissive layer by using substrate conformal imprint lithography (SCIL). Structural and optical characterization reveals that the emission is funnelled into a well-defined angular range by optical resonances, while the emission wavelength and the structural properties of the perovskite film are preserved. The results demonstrate a flexible and scalable approach to the patterning of perovskite layers, paving the way toward perovskite LEDs with designer angular emission patterns.
We present a method for modeling the optical properties of interference layer systems on structured surfaces as used in the MorphoColor technology for coloring integrated photovoltaic modules. By combining a microfacet-based bidirectional scattering distribution function model with a transfer matrix formalism, we can simulate the spectrally resolved reflection and transmission properties of the system in good agreement with measurement data. To consider the MorphoColor technology in an overall optical system and compare the application on the front side of the module glass with the application in the composite, the model is additionally combined with a formalism called Optical Properties of Textured Optical Sheets. For a representative illumination and viewing geometry, the composite configuration causes a significantly improved homogeneity of the color appearance.
The properly chosen light management strategy in perovskite solar cell devices is indispensable in achieving high power conversion efficiency. To diminish the reflection losses, texturization of the front surface, similar to what is used in established solar cell technologies, shall be taken into consideration. Within this paper, a honeycomb‐like textured SU‐8 photoresist layer is applied using a roller nanoimprint technique onto a planar perovskite solar cell to minimize reflection losses. The results show that the applied honeycomb pattern reduces the solar‐weighted reflectance from 13.6% to 2.7%, which enhances the current density of the unmodified cell by 2.1 mA cm−2, outperforming the commonly used planar MgF2 antireflective coating by 0.5 mA cm−2. The experimental results are combined with optical modeling to find optimized structures and predict the optical behavior within a solar module. The process used within this work can be transferred to perovskite‐silicon tandem solar cells, providing a promising pathway for the reflection reduction in future devices.
Perovskite-silicon tandem solar cells have made rapid progress in the last decade. Still, they suffer from multiple loss channels, one of them being optical losses including reflection and thermalization. In this study, the effect of structures at the air-perovskite and perovskite-silicon interface of the tandem solar cell stack on these two loss channels are evaluated. Regarding reflectance, every structure evaluated led to a reduction relative to the optimized planar stack. The best combination of structures evaluated reduced the reflection loss from 3.1 mA/cm2 (planar reference) to 1.0 mA/cm2 equivalent current. Additionally, nanostructured interfaces can lead to a reduction in thermalization losses by enhancing the absorptance in the perovskite sub-cell close to the bandgap. This means that more current can be generated at a higher voltage under the assumption that current-matching is maintained and the perovskite bandgap is increased accordingly, pathing the way towards higher efficiencies. Here, the largest benefit was obtained using a structure at the upper interface. The best result yielded an increase of 4.9%rel in efficiency. A comparison to a tandem solar cell using a fully textured approach with random pyramids on silicon shows potential benefits for the suggested nanostructured approach regarding thermalization losses, while reflectance is reduced at a similar level. In addition, the applicability of the concept in the module context is shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.