In this paper is presented a comparative study regarding the synthesis of hydroxyapatite powders. The chosen method of synthesis of this biomaterial was chemical co-precipitation. The structure, size and morphology of the obtained powders were analyzed by X-ray diffraction, infrared spectroscopy - FTIR, dynamic light diffusion DLS tehnique and scanning electron microscopy-SEM. The results obtained were compared with those obtained on a commercial hydroxyapatite powder. Investigation methods have confirmed the synthesis of a high purity hydroxyapatite with a optimal degree of crystallization and crystallinity for the reconstruction and regeneration of hard tissue.
The aim of the paper was to develop a device (“pin-on-disc” type) for the measurement of friction in plane friction couplings with sliding movement. On tribometric device (made in our laboratory) we can measure the friction force, friction coefficient and wear, for different loading conditions, speeds, time and material coupling.
For the measurement of the frictional force as well as of the coefficients of friction, mainly the method with a resistive tensiometric transducer is used. With a DataQ DI 245 data acquisition board it is possible to record up to 2 kHz frequencies in the range of -10 ÷ +10 mV with a resolution of 13 bits. To test the functionality of the device, a preliminary test was carried out for a steel pin- on- cast iron disc, for different values of the normal pushing force. The device was calibrated and the measurement results were recorded and processed on the computer.
Bioactive glasses based on SiO2-CaO-P2O5 system have been synthesized by sol – gel process. The powder glass obtained has been characterized by X-ray diffraction, X-ray fluorescence spectroscopy (XRF), and Fourier transform-infrared spectroscopy (FTIR). In vitro study reveals formation of apatite layer at surface of powder glass, after 3 days of soaking in simulated body fluid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.