Signal processing tools available to ground penetrating radar data used for shallow subsurface imaging and hydrogeophysical parameter estimation are significantly handled using the same tools available to seismic reflection data. Overall, the same tools produce interpretable images from both data types, but particular noise (wow noise) in electromagnetic data must be removed before stable and accurate quantitative results can be produced. Wow noise is an inherent, nonlinear electromagnetic interference and a significant component of GPR data. Further, the nonlinear and non-stationary nature of wow noise provides a strong argument for preprocessing radar traces with time-domain operators. Time-domain operators designed for nonlinear signals are under increasing development for both electromagnetic and acoustic signal processing. This work demonstrates optimal wow noise removal from ground penetrating radar data using the empirical mode decomposition. The technique provides a data-driven approach to empirically dewowing GPR data.
As part of a multiscale hydrogeophysical and modeling study, a pseudo three-dimensional (3-D) seismic survey was conducted over a contaminant plume at P area, Savannah River site (South Carolina), to enhance the existing geologic model by resolving uncertainties in the lithostratigraphic sequence. The geometry of the dissolved phase trichloroethylene plume, based on initial site characterization, appears to be confined to a narrow corridor within the Eocene sand overlying a clay unit approximately 25 m (82 ft) below land surface. Processing the seismic data as a 3-D data volume instead of a series of closely spaced two-dimensional lines allowed for better interpretation of the target horizons, the lower clay, and the sand above the clay. Calibrating the seismic data with existing borehole geophysical logs, core data as well as vertical seismic profiling (VSP) data allowed the seismic data to be inverted from two-way traveltime to depth, thereby facilitating full integration of the seismic data into a solid earth model that is the basic part of a site conceptual model. The outcome was the production of realistic horizon surface maps that show that two channel complexes are located on the section, which are not present in the conceptual model, and that the upper and middle clays are not laterally continuous as previously thought. The geometry of the primary channel has been transposed over the map view of the plume to investigate potential relationships between the shape of the plume and the presence of the channel.
Various techniques have been designed to maximize the use of ground penetrating radar (GPR) as an exploration tool. Improvements in signal processing are expected to further facilitate the accuracy of parameters derived from using GPR in certain geologic environments. Common-offset GPR data were collected at the Marine Corps Air Station (MCAS) in Beaufort, South Carolina, and dielectric constants were calculated following the application of the empirical mode decomposition (EMD) for dewowing GPR traces. Conventional signal processing is applied to the GPR traces to provide hydrogeophysical parameter estimates such as volumetric water content, porosity, and hydraulic conductivity. The results are validated using a coincident vertical radar profile, existing hydraulic data from direct measurements, and comparing EMD derived parameters with those non-EMD derived. The results of the comparison between the EMD and non-EMD methods show improved hydrogeophysical estimations from the EMD processed data. Dielectric constant (k) values from the non-EMD method are outside the range of the values for all geologic materials (k#40). The subsequent parameter estimates using dielectric constants derived from non-EMD processed data yield erroneous results therefore justifying the use of EMD as a method in dewowing GPR data for quantitative analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.