BackgroundInfection is one of the main reasons for failure of orthopedic implants. Antibacterial coatings may prevent bacterial adhesion and biofilm formation, according to various preclinical studies. The aim of the present study is to report the first clinical trial on an antibiotic-loaded fast-resorbable hydrogel coating (Defensive Antibacterial Coating, DAC®) to prevent surgical site infection, in patients undergoing internal osteosynthesis for closed fractures.Materials and methodsIn this multicenter randomized controlled prospective study, a total of 256 patients in five European orthopedic centers who were scheduled to receive osteosynthesis for a closed fracture, were randomly assigned to receive antibiotic-loaded DAC or to a control group (without coating). Pre- and postoperative assessment of laboratory tests, wound healing, clinical scores and X-rays were performed at fixed time intervals.ResultsOverall, 253 patients were available with a mean follow-up of 18.1 ± 4.5 months (range 12–30). On average, wound healing, clinical scores, laboratory tests and radiographic findings did not show any significant difference between the two groups. Six surgical site infections (4.6%) were observed in the control group compared to none in the treated group (P < 0.03). No local or systemic side-effects related to the DAC hydrogel product were observed and no detectable interference with bone healing was noted.ConclusionsThe use of a fast-resorbable antibiotic-loaded hydrogel implant coating provides a reduced rate of post-surgical site infections after internal osteosynthesis for closed fractures, without any detectable adverse event or side-effects.Level of evidence2.
Stabilization of fractures with internal fixation devices is a common procedure and implant‐associated infections are a dreaded complication. The exact pathomechanism is not completely understood; however, microbial colonization of osteosynthesis material is considered a trigger for infection. This study aimed to determine the colonization rate of osteosynthesis implants in patients with no clinical or laboratory signs of infection, using two methods, conventional culture and polymerase chain reaction ( PCR ) of sonication fluid. Fifty‐seven patients aged between 18 and 79 years without signs of infection who underwent routine removal of osteosynthesis devices between March 2015 and May 2017 were included in this study. Osteosynthesis material was investigated by sonication followed by cultivation of the sonication fluid in blood culture bottles and PCR analysis, simultaneously. Additionally, electron scanning microscopy was performed in nine representative implants to evaluate biofilm production. Thirty‐two (56.1%) implants showed a positive result either by culture or PCR with coagulase‐negative staphylococci being the most commonly identified microorganism (68.1%). Furthermore, the detection rate of the culture (50.9%) was significantly higher compared to PCR (21.1%). The scanning electron microscopy imaging demonstrated biofilm‐like structures in four of six culture and/or PCR ‐positive samples. This study is the first, to the best of our knowledge, to demonstrate bacterial colonization of osteosynthesis implants in healthy patients with no clinical or laboratory signs of infection. Colonization rate was unexpectedly high and conventional culture was superior to PCR in microbial detection. The common understanding that colonization is a trigger for infection underlines the need for strategies to prevent colonization of implant material like antibiotic‐loaded coating or intraoperative gel application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.