Microbial communities regulate ecosystem responses to climate change. However, predicting these responses is challenging because of complex interactions among processes at multiple levels of organization. Organismal traits that determine individual performance and ecological interactions are essential for scaling up environmental responses from individuals to ecosystems. We combine protist microcosm experiments and mathematical models to show that key traits—cell size, shape, and contents—each explain different aspects of species’ demographic responses to changes in temperature. These differences in species’ temperature responses have complex cascading effects across levels of organization—causing nonlinear shifts in total community respiration rates across temperatures via coordinated changes in community composition, equilibrium densities, and community–mean species mass in experimental protist communities that tightly match theoretical predictions. Our results suggest that traits explain variation in population growth, and together, these two factors scale up to influence community- and ecosystem-level processes across temperatures. Connecting the multilevel microbial processes that ultimately influence climate in this way will help refine predictions about complex ecosystem–climate feedbacks and the pace of climate change itself.
Microbial communities regulate ecosystem responses to climate change. But predicting these responses is challenging due to complex interactions among processes at multiple ecological scales. Organismal traits that determine individual performance and ecological interactions are essential for scaling up predictions of environmental responses from individuals to ecosystems. We combine experiments and mathematical models to show that key microbial traits—cell size, shape, and cell contents—independently drive shifts in demographic rates across temperatures, having cascading effects on community structure, dynamics, and ecosystem function. Moreover, intra- and interspecific trait variation play distinct, trait-specific roles in temperature responses. These species-level responses scale up to cause predictable, nonlinear shifts in microbial community composition and respiration rates, with direct implications for the effects of warming on the global carbon cycle. Mechanistically linking microbes with climate using traits will help refine predictions about complex ecosystem-climate feedbacks and the pace of climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.