We consider stochastic programs conditional on some covariate information, where the only knowledge of the possible relationship between the uncertain parameters and the covariates is reduced to a finite data sample of their joint distribution. By exploiting the close link between the notion of trimmings of a probability measure and the partial mass transportation problem, we construct a data-driven Distributionally Robust Optimization (DRO) framework to hedge the decision against the intrinsic error in the process of inferring conditional information from limited joint data. We show that our approach is computationally as tractable as the standard (without side information) Wasserstein-metric-based DRO and enjoys performance guarantees. Furthermore, our DRO framework can be conveniently used to address data-driven decision-making problems under contaminated samples. Finally, the theoretical results are illustrated using a single-item newsvendor problem and a portfolio allocation problem with side information.
In this paper we wish to tackle stochastic programs affected by ambiguity about the probability law that governs their uncertain parameters. Using optimal transport theory, we construct an ambiguity set that exploits the knowledge about the distribution of the uncertain parameters, which is provided by: (1) sample data and (2) a-priori information on the order among the probabilities that the true data-generating distribution assigns to some regions of its support set. This type of order is enforced by means of order cone constraints and can encode a wide range of information on the shape of the probability distribution of the uncertain parameters such as information related to monotonicity or multi-modality. We seek decisions that are distributionally robust. In a number of practical cases, the resulting distributionally robust optimization (DRO) problem can be reformulated as a finite convex problem where the a-priori information translates into linear constraints. In addition, our method inherits the finite-sample performance guarantees of the Wasserstein-metric-based DRO approach proposed by Mohajerin Esfahani and Kuhn (Math Program 171(1–2):115–166. 10.1007/s10107-017-1172-1, 2018), while generalizing this and other popular DRO approaches. Finally, we have designed numerical experiments to analyze the performance of our approach with the newsvendor problem and the problem of a strategic firm competing à la Cournot in a market.
In this paper, we develop a distributionally robust chance-constrained formulation of the Optimal Power Flow problem (OPF) whereby the system operator can leverage contextual information. For this purpose, we exploit an ambiguity set based on probability trimmings and optimal transport through which the dispatch solution is protected against the incomplete knowledge of the relationship between the OPF uncertainties and the context that is conveyed by a sample of their joint probability distribution. We provide an exact reformulation of the proposed distributionally robust chance-constrained OPF problem under the popular conditional-value-at-risk approximation. By way of numerical experiments run on a modified IEEE-118 bus network with wind uncertainty, we show how the power system can substantially benefit from taking into account the well-known statistical dependence between the point forecast of wind power outputs and its associated prediction error. Furthermore, the experiments conducted also reveal that the distributional robustness conferred on the OPF solution by our probability-trimmings-based approach is superior to that bestowed by alternative approaches in terms of expected cost and system reliability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.