CCAAT displacement protein (cux/CDP) is an atypical homeodomain protein that represses expression of several developmentally regulated lymphoid and myeloid genes in vitro, including gp91-phox, immunoglobulin heavy chain, the T-cell receptor  and ␥ chains, and CD8. To determine how this activity affects cell development in vivo, a hypomorphic allele of cux/CDP was created by gene targeting. Homozygous mutant mice (cux/ CDP ⌬HD/⌬HD ) demonstrated a partial neonatal lethality phenotype. Surviving animals suffered from a wasting disease, which usually resulted in death between 2 and 3 weeks of age. Analysis of T lymphopoiesis demonstrated that cux/CDP ⌬HD/⌬HD mice had dramatically reduced thymic cellularity due to enhanced apoptosis, with a preferential loss of CD4 ؉ CD8 ؉ thymocytes. Ectopic CD25 expression was also observed in maturing thymocytes. B lymphopoiesis was also perturbed, with a 2-to 3-fold reduction in total bone marrow B-lineage cells and a preferential loss of cells in transition from pro-B/pre-BI to pre-BII stages due to enhanced apoptosis. These lymphoid abnormalities were independent of effects related to antigen receptor rearrangement. In contrast to the lymphoid demise, cux/CDP ⌬HD/⌬HD mice demonstrated myeloid hyperplasia. Bone marrow reconstitution experiments identified that many of the hematopoietic defects were linked to microenvironmental effects, suggesting that underexpression of survival factors or overexpression of death-inducing factors accounted for the phenotypes observed. Tumor necrosis factor (TNF) levels were elevated in several tissues, especially thymus, suggesting that TNF may be a target gene for cux/CDP-mediated repression. These data suggest that cux/CDP regulates normal hematopoiesis, in part, by modulating the levels of survival and/or apoptosis factors expressed by the microenvironment. (Blood. 2001;98:3658-3667)
Nuclear matrix attachment regions (MARs) flanking the immunoglobulin heavy chain intronic enhancer (Emu) are the targets of the negative regulator, NF-muNR, found in non-B and early pre-B cells. Expression library screening with NF-muNR binding sites yielded a cDNA clone encoding an alternatively spliced form of the Cux/CDP homeodomain protein. Cux/CDP fulfills criteria required for NF-muNR identity. It is expressed in non-B and early pre-B cells but not mature B cells. It binds to NF-muNR binding sites within Emu with appropriate differential affinities. Antiserum specific for Cux/CDP recognizes a polypeptide of the predicted size in affinity-purified NF-muNR preparations and binds NF-muNR complexed with DNA. Cotransfection with Cux/CDP represses the activity of Emu via the MAR sequences in both B and non-B cells. Cux/CDP antagonizes the effects of the Bright transcription activator at both the DNA binding and functional levels. We propose that Cux/CDP regulates cell-type-restricted, differentiation stage-specific Emu enhancer activity by interfering with the function of nuclear matrix-bound transcription activators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.