Conversational interfaces recently gained a lot of attention. One of the reasons for the current hype is the fact that chatbots (one particularly popular form of conversational interfaces) nowadays can be created without any programming knowledge, thanks to different toolkits and socalled Natural Language Understanding (NLU) services. While these NLU services are already widely used in both, industry and science, so far, they have not been analysed systematically. In this paper, we present a method to evaluate the classification performance of NLU services. Moreover, we present two new corpora, one consisting of annotated questions and one consisting of annotated questions with the corresponding answers. Based on these corpora, we conduct an evaluation of some of the most popular NLU services. Thereby we want to enable both, researchers and companies to make more educated decisions about which service they should use.
Smart mobility is a central issue in the recent discourse about urban development policy towards smart cities. The design of innovative and sustainable mobility infrastructures as well as public policies require cooperation and innovations between various stakeholders—businesses as well as policy makers—of the business ecosystems that emerge around smart city initiatives. This poses a challenge for deploying instruments and approaches for the proactive management of such business ecosystems. In this article, we report on findings from a smart city initiative we have used as a case study to inform the development, implementation, and prototypical deployment of a visual analytic system (VAS). As results of our design science research we present an agile framework to collaboratively collect, aggregate and map data about the ecosystem. The VAS and the agile framework are intended to inform and stimulate knowledge flows between ecosystem stakeholders in order to reflect on viable business and policy strategies. Agile processes and roles to collaboratively manage and adapt business ecosystem models and visualizations are defined. We further introduce basic categories for identifying, assessing and selecting Internet data sources that provide the data for ecosystem models and we detail the ecosystem data and view models developed in our case study. Our model represents a first explication of categories for visualizing business ecosystem models in a smart city mobility context.
Business ecosystems are increasingly gaining relevance in research and practice. Because ecosystems progressively change, enterprises are required to analyse their ecosystem, in order to identify and respond to such changes. For gaining a comprehensive picture of the ecosystem, various enterprise stakeholders need to be involved in the analysis process. We use an Action Design Research approach to implement a collaborative process for modelling and visualizing business ecosystems in two case studies. We look at the challenges of the collaborative process and study how a model-driven approach addresses these challenges. We validate and discuss the modelling process along six steps; definition of the business ecosystem focus, model instantiation, data collection, provision of tailored visualizations, model adaption, and using visualizations ‘to tell a story’. In a cross-case analysis, we draw conclusions with respect to process implementation and the role of visualizations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.