Oxygenase‐containing cyanobacteria constitute promising whole‐cell biocatalysts for oxyfunctionalization reactions. Photosynthetic water oxidation thereby delivers the required cosubstrates, that is activated reduction equivalents and O2, sustainably. A recombinant Synechocystis sp. PCC 6803 strain showing unprecedentedly high photosynthesis‐driven oxyfunctionalization activities is developed, and its technical applicability is evaluated. The cells functionally synthesize a heterologous cytochrome P450 monooxygenase enabling cyclohexane hydroxylation. The biocatalyst‐specific reaction rate is found to be light‐dependent, reaching 26.3 ± 0.6 U gCDW−1 (U = μmol min−1 and cell dry weight [CDW]) at a light intensity of 150 µmolphotons m−2 s−1. In situ substrate supply via a two‐liquid phase system increases the initial specific activity to 39.2 ± 0.7 U gCDW−1 and stabilizes the biotransformation by preventing cell toxification. This results in a tenfold increased specific product yield of 4.5 gcyclohexanol gCDW−1 as compared to the single aqueous phase system. Subsequently, the biotransformation is scaled from a shake flask to a 3 L stirred‐tank photobioreactor setup. In situ O2 generation via photosynthetic water oxidation allows a nonaerated process operation, thus circumventing substrate evaporation as the most critical factor limiting the process performance and stability. This study for the first time exemplifies the technical applicability of cyanobacteria for aeration‐independent light‐driven oxyfunctionalization reactions involving highly toxic and volatile substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.