Background. The purpose of this review is to depict current research and impact of artificial intelligence/machine learning (AI/ML) algorithms on dialysis and kidney transplantation. Published studies were presented from two points of view: What medical aspects were covered? What AI/ML algorithms have been used? Methods. We searched four electronic databases or studies that used AI/ML in hemodialysis (HD), peritoneal dialysis (PD), and kidney transplantation (KT). Sixty-nine studies were split into three categories: AI/ML and HD, PD, and KT, respectively. We identified 43 trials in the first group, 8 in the second, and 18 in the third. Then, studies were classified according to the type of algorithm. Results. AI and HD trials covered: (a) dialysis service management, (b) dialysis procedure, (c) anemia management, (d) hormonal/dietary issues, and (e) arteriovenous fistula assessment. PD studies were divided into (a) peritoneal technique issues, (b) infections, and (c) cardiovascular event prediction. AI in transplantation studies were allocated into (a) management systems (ML used as pretransplant organ-matching tools), (b) predicting graft rejection, (c) tacrolimus therapy modulation, and (d) dietary issues. Conclusions. Although guidelines are reluctant to recommend AI implementation in daily practice, there is plenty of evidence that AI/ML algorithms can predict better than nephrologists: volumes, Kt/V, and hypotension or cardiovascular events during dialysis. Altogether, these trials report a robust impact of AI/ML on quality of life and survival in G5D/T patients. In the coming years, one would probably witness the emergence of AI/ML devices that facilitate the management of dialysis patients, thus increasing the quality of life and survival.
Based on the core approach of the tree edit distance algorithm, the system central module is designed to target the scope of TEsemantic variability. The main idea is to transform the hypothesis making use of extensive semantic knowledge from sources like DIRT, WordNet, Wikipedia, acronyms database. Additionally, we built a system to acquire the extra background knowledge needed and applied complex grammar rules for rephrasing in English.
Artificial Intelligence is providing astonishing results, with medicine being one of its favourite playgrounds. Machine Learning and, in particular, Deep Neural Networks are behind this revolution. Among the most challenging targets of interest in medicine are cancer diagnosis and therapies but, to start this revolution, software tools need to be adapted to cover the new requirements. In this sense, learning tools are becoming a commodity but, to be able to assist doctors on a daily basis, it is essential to fully understand how models can be interpreted. In this survey, we analyse current machine learning models and other in-silico tools as applied to medicine—specifically, to cancer research—and we discuss their interpretability, performance and the input data they are fed with. Artificial neural networks (ANN), logistic regression (LR) and support vector machines (SVM) have been observed to be the preferred models. In addition, convolutional neural networks (CNNs), supported by the rapid development of graphic processing units (GPUs) and high-performance computing (HPC) infrastructures, are gaining importance when image processing is feasible. However, the interpretability of machine learning predictions so that doctors can understand them, trust them and gain useful insights for the clinical practice is still rarely considered, which is a factor that needs to be improved to enhance doctors’ predictive capacity and achieve individualised therapies in the near future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.