This paper proposes a UAV platform that autonomously detects, hunts, and takes down other small UAVs in GPS-denied environments. The platform detects, tracks, and follows another drone within its sensor range using a pre-trained machine learning model. We collect and generate a 58,647-image dataset and use it to train a Tiny YOLO detection algorithm. This algorithm combined with a simple visual-servoing approach was validated on a physical platform. Our platform was able to successfully track and follow a target drone at an estimated speed of 1.5 m/s. Performance was limited by the detection algorithm’s 77% accuracy in cluttered environments and the frame rate of eight frames per second along with the field of view of the camera.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.