V-ATPases are ubiquitous, vital proton pumps that play a multiplicity of roles in higher organisms. In many epithelia, they are the major energizer of cotransport processes and have been implicated in functions as diverse as fluid secretion and longevity. The first animal knockout of a V-ATPase was identified in Drosophila, and its recessive lethality demonstrated the essential nature of V-ATPases. This article surveys the entire V-ATPase gene family in Drosophila, both experimentally and in silico. Adult expression patterns of most of the genes are shown experimentally for the first time, using in situ hybridization or reporter gene expression, and these results are reconciled with published expression and microarray data. For each subunit, the single gene identified previously by microarray, as upregulated and abundant in tubules, is shown to be similarly abundant in other epithelia in which V-ATPases are known to be important; there thus appears to be a single dominant "plasma membrane" V-ATPase holoenzyme in Drosophila. This provides the most comprehensive view of V-ATPase expression yet in a multicellular organism. The transparent Malpighian tubule phenotype first identified in lethal alleles of vha55, the gene encoding the B-subunit, is shown to be general to those plasma membrane V-ATPase subunits for which lethal alleles are available, and to be caused by failure to accumulate uric acid crystals. These results coincide with the expression view of the gene family, in which 13 of the genes are specialized for epithelial roles, whereas others have spatially or temporally restricted patterns of expression.
The vital task of vectorial solute transport is often energised by a plasma membrane, proton-motive V-ATPase. However, its proposed partner, an apical alkali-metal/proton exchanger, has remained elusive. Here, both FlyAtlas microarray data and in situ analyses demonstrate that the bacterial kefB and kefC (members of the CPA2 family) homologues in Drosophila, CG10806 and CG31052, respectively, are both co-expressed with V-ATPase genes in transporting epithelia. Immunocytochemistry localises endogenous CG10806 and CG31052 to the apical plasma membrane of the Malpighian (renal) tubule. YFP-tagged CG10806 and CG31052 both localise to the plasma membrane of Drosophila S2 cells, and when driven in principal cells of the Malpighian tubule, they localise specifically to the apical plasma membrane. V-ATPase-energised fluid secretion is affected by overexpression of CG10806, but not CG31052; in the former case, overexpression causes higher basal rates, but lower stimulated rates, of fluid secretion compared with parental controls. Overexpression also impacts levels of secreted Na+ and K+. Both genes rescue exchanger-deficient (nha1 nhx1) yeast, but act differently; CG10806 is driven predominantly to the plasma membrane and confers protection against excess K+, whereas CG31052 is expressed predominantly on the vacuolar membrane and protects against excess Na+. Thus, both CG10806 and CG31052 are functionally members of the CPA2 gene family, colocalise to the same apical membrane as the plasma membrane V-ATPase and show distinct ion specificities, as expected for the Wieczorek exchanger.
Analysis of the transcriptome of the Drosophila melanogaster Malpighian (renal) tubule gives a radically new view of the function of the tubule, emphasising solute transport rather than fluid secretion.
SUMMARY Insect Malpighian (renal) tubules are capable of transporting fluid at remarkable rates. Secondary active transport of potassium at the apical surface of the principal cell must be matched by a high-capacity basolateral potassium entry route. A recent microarray analysis of Drosophilatubule identified three extremely abundant and enriched K+ channel genes encoding the three inward rectifier channels of Drosophila: ir, irk2 and irk3. Enriched expression of inward rectifier channels in tubule was verified by quantitative RT-PCR, and all three IRKs localised to principal cells of the main segment (and irand irk3 to the lower tubule) by in situ hybridisation,suggesting roles both in primary secretion and reabsorption. A new splice form of irk2 was also identified. The role of inward rectifiers in fluid secretion was assessed with a panel of selective inhibitors of inward rectifier channels, the antidiabetic sulphonylureas. All completely inhibited fluid secretion, with IC50s of 0.78 mmol l-1 for glibenclamide and approximately 5 mmol l-1 for tolbutamide, 0.01 mmol l-1 for minoxidil and 0.1 mmol l-1 for diazoxide. This pharmacology is consistent with a lower-affinity class of inward rectifier channel that does not form an obligate multimer with the sulphonylurea receptor (SUR), although effects on non-IRK targets cannot be excluded. Glibenclamide inhibited fluid secretion similarly to basolateral K+-free saline. Radiolabelled glibenclamide is both potently transported and metabolised by tubule. Furthermore, glibenclamide is capable of blocking transport of the organic dye amaranth (azorubin S), at concentrations of glibenclamide much lower than required to impact on fluid secretion. Glibenclamide thus interacts with tubule in three separate ways; as a potent inhibitor of fluid secretion,as an inhibitor (possibly competitive) of an organic solute transporter and as a substrate for excretion and metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.