SUMMARY Cyanobacteria are ecologically important photosynthetic prokaryotes that also serve as popular model organisms for studies of photosynthesis and gene regulation. Both molecular and ecological studies of cyanobacteria benefit from real-time information on photosynthesis and acclimation. Monitoring in vivo chlorophyll fluorescence can provide noninvasive measures of photosynthetic physiology in a wide range of cyanobacteria and cyanolichens and requires only small samples. Cyanobacterial fluorescence patterns are distinct from those of plants, because of key structural and functional properties of cyanobacteria. These include significant fluorescence emission from the light-harvesting phycobiliproteins; large and rapid changes in fluorescence yield (state transitions) which depend on metabolic and environmental conditions; and flexible, overlapping respiratory and photosynthetic electron transport chains. The fluorescence parameters FV/FM, FV′/FM′,qp,qN, NPQ, and φPS II were originally developed to extract information from the fluorescence signals of higher plants. In this review, we consider how the special properties of cyanobacteria can be accommodated and used to extract biologically useful information from cyanobacterial in vivo chlorophyll fluorescence signals. We describe how the pattern of fluorescence yield versus light intensity can be used to predict the acclimated light level for a cyanobacterial population, giving information valuable for both laboratory and field studies of acclimation processes. The size of the change in fluorescence yield during dark-to-light transitions can provide information on respiration and the iron status of the cyanobacteria. Finally, fluorescence parameters can be used to estimate the electron transport rate at the acclimated growth light intensity.
In contrast with the model Escherichia coli Clp protease, the ATP-dependent Clp protease in higher plants has a remarkably diverse proteolytic core consisting of multiple ClpP and ClpR paralogs, presumably arranged within a dual heptameric ring structure. Using antisense lines for the nucleus-encoded ClpP subunit, ClpP6, we show that the Arabidopsis thaliana Clp protease is vital for chloroplast development and function. Repression of ClpP6 produced a proportional decrease in the Clp proteolytic core, causing a chlorotic phenotype in young leaves that lessened upon maturity. Structural analysis of the proteolytic core revealed two distinct subcomplexes that likely correspond to single heptameric rings, one containing the ClpP1 and ClpR1-4 proteins, the other containing ClpP3-6. Proteomic analysis revealed several stromal proteins more abundant in clpP6 antisense lines, suggesting that some are substrates for the Clp protease. A proteolytic assay developed for intact chloroplasts identified potential substrates for the stromal Clp protease in higher plants, most of which were more abundant in young Arabidopsis leaves, consistent with the severity of the chlorotic phenotype observed in the clpP6 antisense lines. The identified substrates all function in more general housekeeping roles such as plastid protein synthesis, folding, and quality control, rather than in metabolic activities such as photosynthesis.
The identity and scope of chloroplast and mitochondrial proteases in higher plants has only started to become apparent in recent years. Biochemical and molecular studies suggested the existence of Clp, FtsH, and DegP proteases in chloroplasts, and a Lon protease in mitochondria, although currently the full extent of their role in organellar biogenesis and function remains poorly understood. Rapidly accumulating DNA sequence data, especially from Arabidopsis, has revealed that these proteolytic enzymes are found in plant cells in multiple isomeric forms. As a consequence, a systematic approach was taken to catalog all these isomers, to predict their intracellular location and putative processing sites, and to propose a standard nomenclature to avoid confusion and facilitate scientific communication. For the Clp protease most of the ClpP isomers are found in chloroplasts, whereas one is mitochondrial. Of the ATPase subunits, the one ClpD and two ClpC isomers are located in chloroplasts, whereas both ClpX isomers are present in mitochondria. Isomers of the Lon protease are predicted in both compartments, as are the different forms of FtsH protease. DegP, the least characterized protease in plant cells, has the most number of isomers and they are predicted to localize in several cell compartments. These predictions, along with the proposed nomenclature, will serve as a framework for future studies of all four families of proteases and their individual isomers.
SummaryProteolysis functions as a precise regulatory mechanism for a broad spectrum of cellular processes. Such control impacts not only on the stability of key metabolic enzymes but also on the effective removal of terminally damaged polypeptides. Much of this directed protein turnover is performed by proteases that require ATP and, of those in bacteria, the Clp protease from Escherichia coli is one of the best characterized to date. The Clp holoenzyme consists of two adjacent heptameric rings of the proteolytic subunit known as ClpP, which are flanked by a hexameric ring of a regulatory subunit from the Clp/Hsp100 chaperone family at one or both ends. The recently resolved threedimensional structure of the E. coli ClpP protein has provided new insights into its interaction with the regulatory/chaperone subunits. In addition, an increasing number of studies over the last few years have recognized the added complexity and functional importance of ClpP proteins in other eubacteria and, in particular, in photosynthetic organisms ranging from cyanobacteria to higher plants. The goal of this review is to summarize these recent findings and to highlight those areas that remain unresolved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.