DNA origami structures have great potential as functional platforms in various biomedical applications. Many applications, however, are incompatible with the high Mg concentrations commonly believed to be a prerequisite for maintaining DNA origami integrity. Herein, we investigate DNA origami stability in low-Mg buffers. DNA origami stability is found to crucially depend on the availability of residual Mg ions for screening electrostatic repulsion. The presence of EDTA and phosphate ions may thus facilitate DNA origami denaturation by displacing Mg ions from the DNA backbone and reducing the strength of the Mg -DNA interaction, respectively. Most remarkably, these buffer dependencies are affected by DNA origami superstructure. However, by rationally selecting buffer components and considering superstructure-dependent effects, the structural integrity of a given DNA origami nanostructure can be maintained in conventional buffers even at Mg concentrations in the low-micromolar range.
DNA nanotechnology holds substantial promise for future biomedical engineering and the development of novel therapies and diagnostic assays. The subnanometer‐level addressability of DNA nanostructures allows for their precise and tailored modification with numerous chemical and biological entities, which makes them fit to serve as accurate diagnostic tools and multifunctional carriers for targeted drug delivery. The absolute control over shape, size, and function enables the fabrication of tailored and dynamic devices, such as DNA nanorobots that can execute programmed tasks and react to various external stimuli. Even though several studies have demonstrated the successful operation of various biomedical DNA nanostructures both in vitro and in vivo, major obstacles remain on the path to real‐world applications of DNA‐based nanomedicine. Here, we summarize the current status of the field and the main implementations of biomedical DNA nanostructures. In particular, we focus on open challenges and untackled issues and discuss possible solutions.
With the introduction of the DNA origami technique, it became possible to rapidly synthesize almost arbitrarily shaped molecular nanostructures at nearly stoichiometric yields. The technique furthermore provides absolute addressability in the sub-nm range, rendering DNA origami nanostructures highly attractive substrates for the controlled arrangement of functional species such as proteins, dyes, and nanoparticles. Consequently, DNAorigami nanostructures have found applications in numerous areas of fundamental and applied research, ranging from drug delivery to biosensing to plasmonics to inorganic materials synthesis. Since many of those applications rely on structurally intact, well-definedDNA origami shapes, the issue of DNA origami stability under numerous application-relevant environmental conditions has received increasing interest in the past few years. In this mini-review we discuss the structural stability, denaturation, and degradation of DNA origami nanostructures under different conditions relevant to the fields of biophysics and biochemistry, biomedicine, and materials science, and the methods to improve their stability for desired applications.
Doxorubicin (DOX) is a common drug in cancer chemotherapy, and its high DNA-binding affinity can be harnessed in preparing DOX-loaded DNA nanostructures for targeted delivery and therapeutics. Although DOX has been widely studied, the existing literature of DOX-loaded DNA-carriers remains limited and incoherent. Here, based on an in-depth spectroscopic analysis, we characterize and optimize the DOX loading into different 2D and 3D scaffolded DNA origami nanostructures (DONs). In our experimental conditions, all DONs show similar DOX binding capacities (one DOX molecule per two to three base pairs), and the binding equilibrium is reached within seconds, remarkably faster than previously acknowledged. To characterize drug release profiles, DON degradation and DOX release from the complexes upon DNase I digestion was studied. For the employed DONs, the relative doses (DOX molecules released per unit time) may vary by two orders of magnitude depending on the DON superstructure. In addition, we identify DOX aggregation mechanisms and spectral changes linked to pH, magnesium, and DOX concentration. These features have been largely ignored in experimenting with DNA nanostructures, but are probably the major sources of the incoherence of the experimental results so far. Therefore, we believe this work can act as a guide to tailoring the release profiles and developing better drug delivery systems based on DNA-carriers.
An investigation on polymer spherulites is being described in three parts. Part I (the present paper) describes the various effects observed under the polarizing microscope. These are interpreted in terms of the concepts of crystal optics; the problem of the position of the molecules and that of the microscopic fine structures will form Parts II and III. The materials examined were: polyethylene terephthalate, polyhexamethylene sebacamide and adipamide, and polyethylene. It is confirmed that the growing spherulites are a crystalline part of the crystallizing melt, and their individuality is demonstrated. The spherulites are radiating fibrous structures and the various observed extinction effects were interpreted in terms of such fibrous units. These extinction effects varied with the different materials and also for a particular substance with conditions of crystallization. Apart from the usual Maltese crosses, zigzag and ringshaped extinction lines were observed between crossed Nicols. The zigzag lines were interpreted as resulting from the index ellipsoids lying along elongated helical paths, while the most plausible explanation of the rings is given by closely coiled or strongly twisted arrangements of the index ellipsoids. The possibility of the existence of helical structures in spherulites is discussed in the light of earlier work on spherulites of simple substances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.