One approach to avoid production of acid whey during the manufacture of high-protein yogurt and related products is to concentrate the milk before fermentation. However, the resultant gels are firm so that stirring in the tank and further processing are difficult on an industrial scale. We hypothesize that power ultrasound (US) during fermentation softens the gel because sound waves cause cavitation and strong shear forces in the fluid. Skim milk was standardized to different protein contents up to 12%, heated (85°C, 30 min), and acidified with thermophilic or mesophilic starter cultures. An excessive increase in gel firmness as a function of protein content was detected. In the next series of experiments, US was applied during fermentation. Milks (10% protein) were acidified at 43.5°C and sonicated from pH 5.8 to 5.1 with a sonotrode (20 kHz, 20 W). Immediately after fermentation, gels were agitated using a rheometer with a vane geometry. The maximum torque required to break the gel was reduced by 75% following US, and gel firmness was reduced by 80%. Gels were then processed into stirred yogurt and analyzed. Sonicated samples were smoother with fewer large aggregates. Confocal laser scanning microscopy images suggested a less cohesive structure and more compact microgel particles, resulting in reduced viscosity. We concluded that US is a promising tool to weaken the gel and facilitate further processing. This enables new approaches for the manufacture of Greek yogurt, particularly in regard to avoiding production of acid whey and developing products with novel textures.
Machinery such as pumps used for the commercial production of fermented milk products cause vibrations that can spread to the fermentation tanks. During fermentation, such vibrations can disturb the gelation of milk proteins by causing texture defects including lumpiness and syneresis. To study the effect of vibrations on yogurt structure systematically, an experimental setup was developed consisting of a vibration exciter to generate defined vibrational states and accelerometers for monitoring. During the fermentation of skim milk, vibrations (frequency sweep: 25 to 1,005 Hz) were introduced at different pH (5.7 to 5.1, step width 0.1 units) for 200 s. Physical properties of set gels (syneresis, firmness) and resultant stirred yogurts (visible particles, rheology, laser diffraction) were analyzed. Vibrational treatments at pH 5.5 to 5.2 increased syneresis, gel firmness, and the number of large particles (d > 0.9 mm); hence, this period was considered critical. The particle number increased from 34 ± 5 to 242 ± 16 particles per 100 g of yogurt due to vibrations at pH 5.4. In further experiments, yogurts were excited with fixed frequencies (30, 300, and 1,000 Hz). All treatments increased syneresis, firmness, and particle formation. As the strongest effect was observed by applying 30 Hz, the amplitude was set to vibration accelerations of a = 5, 10, 15, 20, and 25 m/s in the final experiments. The number of large particles was increased due to each treatment and a positive correlation with the amplitude was found. We concluded that vibrations during gelation increase the collision probability of aggregating milk proteins, resulting in a compressed set gel with syneresis. Resultant stirred yogurts exhibit large particles with a compact structure leading to a reduced water-holding capacity and product viscosity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.