Locally finding a solution to symmetry-breaking tasks such as vertex-coloring, edge-coloring, maximal matching, maximal independent set, etc., is a long-standing challenge in distributed network computing. More recently, it has also become a challenge in the framework of centralized local computation. We introduce conflict coloring as a general symmetry-breaking task that includes all the aforementioned tasks as specific instantiations -conflict coloring includes all locally checkable labeling tasks from [Naor & Stockmeyer, STOC 1993]. Conflict coloring is characterized by two parameters l and d, where the former measures the amount of freedom given to the nodes for selecting their colors, and the latter measures the number of constraints which colors of adjacent nodes are subject to. We show that, in the standard LOCAL model for distributed network computing, if l/d > ∆, then conflict coloring can be solved in O( √ ∆) + log * n rounds in n-node graphs with maximum degree ∆, where O ignores the polylog factors in ∆. The dependency in n is optimal, as a consequence of the Ω(log * n) lower bound by [Linial, SIAM J. Comp. 1992] for (∆ + 1)-coloring. An important special case of our result is a significant improvement over the best known algorithm for distributed (∆+ 1)-coloring due to [Barenboim, PODC 2015], which required O(∆ 3/4 ) + log * n rounds. Improvements for other variants of coloring, including (∆ + 1)-list-coloring, (2∆ − 1)-edge-coloring, coloring with forbidden color distances, etc., also follow from our general result on conflict coloring. Likewise, in the framework of centralized local computation algorithms (LCAs), our general result yields an LCA which requires a smaller number of probes than the previously best known algorithm for vertex-coloring, and works for a wide range of coloring problems.
Two identical (anonymous) mobile agents start from arbitrary nodes in an a priori unknown graph and move synchronously from node to node with the goal of meeting. This rendezvous problem has been thoroughly studied, both for anonymous and for labeled agents, along with another basic task, that of exploring graphs by mobile agents. The rendezvous problem is known to be not easier than graph exploration. A well-known recent result on exploration, due to Reingold, states that deterministic exploration of arbitrary graphs can be performed in log-space, i.e., using an agent equipped with O(log n) bits of memory, where n is the size of the graph. In this paper we study the size of memory of mobile agents that permits us to solve the rendezvous A preliminary version of this paper appeared in
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.