Biological cells display complex internal architectures with distinct micro environments that establish the chemical heterogeneity needed to sustain cellular functions. The continued efforts to create advanced cell mimics, namely, artificial cells, demands strategies for constructing similarly heterogeneous structures with localized functionalities. Here, we introduce a platform for constructing membraneless artificial cells from the self-assembly of synthetic DNA nanostructures in which internal domains can be established thanks to prescribed reaction–diffusion waves. The method, rationalized through numerical modeling, enables the formation of up to five distinct concentric environments in which functional moieties can be localized. As a proof-of-concept, we apply this platform to build DNA-based artificial cells in which a prototypical nucleus synthesizes fluorescent RNA aptamers that then accumulate in a surrounding storage shell, thus demonstrating the spatial segregation of functionalities reminiscent of that observed in biological cells.
Biological cells display complex internal architectures, with distinct micro environments that establish the chemical heterogeneity needed to sustain cellular functions. The continued efforts to create advanced cell mimics - artificial cells - demands strategies to robustly engineer micro-compartmentalised architectures, where the molecular makeup of distinct regions is coupled with localised functionalities. Here, we introduce a platform for constructing membrane-less artificial cells from the self-assembly of synthetic DNA nanostructures, in which internal domains can be established thanks to a rationally designed reaction-diffusion process. The method, rationalised through numerical modelling, enables the formation of up to five distinct and addressable environments, in which functional moieties can be localised. As a proof-of-concept, we apply this platform to build artificial cells in which a prototypical nucleus synthesises fluorescent RNA aptamers, which then accumulate in a surrounding storage shell, thus demonstrating spatial segregation of functionalities reminiscent of that observed in biological cells.
Three-dimensional crystalline frameworks with nanoscale periodicity are valuable for many emerging technologies, from nanophotonics to nanomedicine. DNA nanotechnology has emerged as a prime route for constructing these materials, with most approaches taking advantage of the structural rigidity and bond directionality programmable for DNA building blocks. Recently, we have introduced an alternative strategy reliant on flexible, amphiphilic DNA junctions dubbed C-stars, whose ability to crystallize is modulated by design parameters such as nanostructure topology, conformation, rigidity and size. While C-stars have been shown to form ordered phases with controllable lattice parameter, response to stimuli, and embedded functionalities, much of their vast design space remains unexplored. Here, we investigate the effect of changing the chemical nature of the hydrophobic modifications and the structure of the DNA motifs in the vicinity of these moieties. While similar design variations should strongly alter key properties of the hydrophobic interactions between C-stars, such as strength and valency, only limited differences in self-assembly behaviour are observed. This finding suggests that long-range order in C-star crystals is likely imposed by structural features of the building block itself, rather than the specific characteristics of the hydrophobic tags. Nonetheless, we find that altering the hydrophobic regions influences the ability of C-star crystals to uptake hydrophobic molecular cargoes, which we exemplify by studying the encapsulation of antibiotic penicillin V. Besides advancing our understanding of the principles governing the self-assembly of amphiphilic DNA building blocks, our observations thus open up new routes to chemically program the materials without affecting their structure.
Synthetic cells, like their biological counterparts, require internal compartments with distinct chemical and physical properties where different functionalities can be localised. Inspired by membrane-less compartmentalisation in biological cells, here we demonstrate how micro-phase separation can be used to engineer heterogeneous cell-like architectures with programmable morphology and compartment-targeted activity. The synthetic cells self-assemble from amphiphilic DNA nanostructures, producing core-shell condensates due to size-induced de-mixing. Lipid deposition and phase-selective etching are then used to generate a porous pseudo-membrane, a cytoplasm analogue, and membrane-less organelles. The synthetic cells can sustain RNA synthesis via in vitro transcription, leading to cytoplasm and pseudo-membrane expansion caused by an accumulation of the transcript. Our approach exemplifies how architectural and functional complexity can emerge from a limited number of distinct building blocks, if molecular-scale programmability, emergent biophysical phenomena, and biochemical activity are coupled to mimic those observed in live cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.