Wood flour is particularly suitable as a filler in thermoplastics because it is environmentally friendly, readily available, and offers a high strength-to-density ratio. To overcome the insufficient interfacial adhesion between hydrophilic wood and a hydrophobic matrix, a thermoplastic polymer was grafted from wood flour via surface-initiated activators regenerated by electron transfer-atom transfer radical polymerization (SI-ARGET ATRP). Wood particles were modified with an ATRP initiator and subsequently grafted with methyl acrylate for different polymerization times in the absence of a sacrificial initiator. The successful grafting of poly(methyl acrylate) (PMA) was demonstrated using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and water contact angle (WCA) measurements. To confirm the control over the polymerization, a cleavable ATRP initiator was immobilized on the particles, allowing the detachment of the grafted polymer under mild conditions. The grafted particles were incorporated into a PMA matrix using solvent casting and their influence on the mechanical properties (Young’s modulus, yield strength, and toughness) of the composite was investigated. Tensile testing showed that the mechanical properties improved with increasing polymerization time and increasing ratio of incorporated grafted particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.