Ion channels on the membrane of cardiomyocytes regulate the propagation of action potentials from cell to cell and hence are essential for the proper function of the heart. Through computer simulations with the classical monodomain model for cardiac tissue and the more recent extracellular-membrane-intracellular (EMI) model where individual cells are explicitly represented, we investigated how conduction velocity (CV) in cardiac tissue depends on the strength of various ion currents as well as on the spatial distribution of the ion channels. Our simulations show a sharp decrease in CV when reducing the strength of the sodium (Na+) currents, whereas independent reductions in the potassium (K1 and Kr) and L-type calcium currents have negligible effect on the CV. Furthermore, we find that an increase in number density of Na+ channels towards the cell ends increases the CV, whereas a higher number density of K1 channels slightly reduces the CV. These findings contribute to the understanding of ion channels (e.g. Na+ and K+ channels) in the propagation velocity of action potentials in the heart.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.