This study focuses on the dependence of nonlinear electrophoretic migration of particles on the particle size and particle electrical charge. This is the first report of the experimental assessment of the mobilities of the nonlinear electrophoretic velocity of colloidal polystyrene microparticles under two distinct electric field dependences. A total of nine distinct types of polystyrene microparticles of varying size and varying electrical charge were divided into two groups to study separately the effects of particle size and the effects of particle charge. The mobilities of the nonlinear electrophoretic velocity of each particle type were determined in both the cubic and 3/2 regimes (μ EP,NL(3) and μ EP,NL (3/2) ). The results unveiled that both mobilities had similar relationships with particle size and charge. The magnitude of both μ EP,NL(3) and μ EP,NL (3/2) increased with increasing particle size and decreased with increasing magnitude of particle charge. However, the observed trends were not perfect as discussed in the Results and Discussion section but still provide valuable information. These findings will aid in the design of future size-based and charge-based separations of particles and microorganisms.
Contemporary findings in the field of insulator-based electrokinetics have demonstrated that in systems under the influence of direct current (DC) fields, dielectrophoresis (DEP) is not the main electrokinetic mechanism responsible for particle manipulation but rather the sum of electroosmosis, linear and nonlinear electrophoresis. Recent microfluidic studies have brought forth a methodology capable of experimentally estimating the nonlinear electrophoretic mobility of colloidal particles. This methodology, however, is limited to particles that fit two conditions: (i) the particle charge has the same sign as the channel wall charge and (ii) the magnitude of the particle ζ-potential is lower than that of the channel wall. The present work aims to expand upon this methodology by including particles whose ζ-potential has a magnitude larger than that of the wall, referred to as “type 2” particles, as well as to report findings on particles that appear to still be under the influence of the linear electrophoretic regime even at extremely high electric fields (∼6000 V/cm), referred to as “type 3” particles. Our findings suggest that both particle size and charge are key parameters in the determination of nonlinear electrophoretic properties. Type 2 microparticles were all found to be small (diameter ∼ 1 μm) and highly charged, with ζ-potentials above −60 mV; in contrast, type 3 microparticles were all large with ζ-potentials between −40 and −50 mV. However, it was also hypothesized that other nonconsidered parameters could be influencing the results, especially at higher electric fields (>3000 V/cm). The present work also aims to identify the current limitations in the experimental determination of μEP,NL and propose a framework for future work to address the current gaps in the evolving topic of nonlinear electrophoresis of colloidal particles.
The selective positioning and arrangement of distinct types of multiscale particles can be used in numerous applications in microfluidics, including integrated circuits, sensors and biochips. Electrokinetic (EK) techniques offer an extensive range of options for label‐free manipulation and patterning of colloidal particles by exploiting the intrinsic electrical properties of the target of interest. EK‐based techniques have been widely implemented in many recent studies, and various methodologies and microfluidic device designs have been developed to achieve patterning two‐ and three‐dimensional (3D) patterned structures. This review provides an overview of the progress in electropatterning research during the last 5 years in the microfluidics arena. This article discusses the advances in the electropatterning of colloids, droplets, synthetic particles, cells, and gels. Each subsection analyzes the manipulation of the particles of interest via EK techniques such as electrophoresis and dielectrophoresis. The conclusions summarize recent advances and provide an outlook on the future of electropatterning in various fields of application, especially those with 3D arrangements as their end goal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.