This paper addresses the formulation of a set of constitutive equations for finite deformation metal plasticity. The combined isotropic-kinematic hardening model of the infinitesimal theory of plasticity is extended to the large strain range on the basis of three main assumptions: (i) the formulation is hyperelastic based, (ii) the stress-strain law preserves the elastic constants of the infinitesimal theory but is written in terms of the Hencky strain tensor and its elastic work conjugate stress tensor, and (iii) the multiplicative decomposition of the deformation gradient is adopted. Since no stress rates are present, the formulation is, of course, numerically objective in the time integration. It is shown that the model gives adequate physical behaviour, and comparison is made with an equivalent constitutive model based on the additive decomposition of the strain tensor.
Abstract--Existing methods for the analysis of contact problems deal with the inequality constraints arising from contact conditions by means of an implicit iteration on all constraints. This paper presents a formulation for contact problems with friction for large deformations where all inequality constraints are enforced explicitly. A robust solution technique for the resulting system of nonlinear equations can then be used. This approach admits the use of line search procedures to enlarge the region of convergence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.