Summary The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) regulates activation of the hypothalamic-pituitary-adrenal (HPA) axis and the adrenal gland in response to various stressors. We previously found that in response to acute psychological stress (restraint), elevated corticotrophin-releasing hormone (CRH) mRNA levels in the hypothalamic paraventricular nucleus (PVN) as well as elevated plasma corticosterone (CORT) were profoundly attenuated in PACAP-deficient mice. To determine whether HPA axis responses and stress-induced depressive-like behaviors in a chronic stress paradigm are affected by PACAP deficiency, we subjected mice to 14 days of social defeat stress. Defeat-exposed PACAP−/− mice showed a marked attenuation of stress-induced increases in serum CORT levels, cellular PVN ΔFosB immunostaining, and depressive-like behaviors (social interaction and forced swim tests) compared to wild-type control mice. The PACAP−/− mice showed reduced PVN FosB-positive cell numbers, but relatively elevated cell counts in several forebrain areas including the medial prefrontal cortex, after social stress. PACAP appears to be specific for mediating HPA activation only in psychological stress because marked elevations in plasma CORT after a systemic stressor (lipopolysaccharide administration) occurred regardless of genotype. We conclude that chronically elevated CORT is a key component of depressive effects of social defeat, and that attenuation of the CORT response at the level of the PVN, as well as extrahypothalamic forebrain regions, in PACAP-deficient mice protects from development of depressive behavior.
Acute restraint stress (ARS) for 3 hours causes CORT elevation in venous blood, which is accompanied by Fos up-regulation in the paraventricular nucleus (PVN) of male C57BL/6 mice. CORT elevation by ARS is attenuated in PACAP-deficient mice, but unaffected in PAC1-deficient mice. Correspondingly, Fos up-regulation by ARS is greatly attenuated in PACAP-deficient mice, but much less so in PAC1-deficient animals. We noted that both PACAP- and PAC1-deficiency greatly attenuate CORT elevation after ARS when CORT measurements are performed on trunk blood following euthanasia by abrupt cervical separation: this latter observation is of critical importance in assessing the role of PACAP neurotransmission in ARS, based on previous reports in which serum CORT was sampled from trunk blood. Seven days of chronic restraint stress (CRS) induces non-habituating CORT elevation, and weight loss consequent to hypophagia, in wild-type male C57BL/6 mice. Both CORT elevation and weight loss following seven day CRS are severely blunted in PACAP-deficient mice, but only slightly in PAC1 deficient mice. However, longer periods of daily restraint (14–21 days) resulted in sustained weight loss and elevated CORT in wild-type mice, and these effects of long-term chronic stress were attenuated or abolished in both PACAP- and PAC1-deficient mice. We conclude that while a PACAP receptor in addition to PAC1 may mediate some of the PACAP-dependent central effects of acute restraint stress and short-term (<7 days) chronic restraint stress on the HPA axis, the PAC1 receptor plays a prominent role in mediating PACAP-dependent HPA axis activation, and hypophagia, during long-term (>7 days) chronic restraint stress.
As one of the earliest examples of “chemical biology,” the Mechanistic Target of Rapamycin (mTOR) protein and its chemical inhibitors have been extensively studied across a spectrum of physiological and pathological processes at the molecular, organismal, and patient population levels. There are several FDA-approved mTOR inhibitors (sirolimus, everolimus and temsirolimus) with indications for cancer treatment and for prevention of solid organ rejection. Dozens of mTOR inhibitors are currently being evaluated in hundreds of on-going clinical trials across a spectrum of diseases, including numerous cancer indications, autoimmune diseases, and a number of congenital disorders. As many of the approved and investigational indications for mTOR inhibitors require long-term treatment, the magnitude and incidence of particular side effects differs from those observed in shorter-term treatments. Here, we focus on the particular increased risk of infections while receiving mTOR inhibitors. While increased infection rates might be expected from a class of drugs approved as post-transplant immunosuppressants, we review reports from clinical, mechanistic, and genetically engineered mouse model (GEMM) studies detailing a much more nuanced view of mTOR inhibitor drug action and target biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.