Endothelial dysfunction is a hallmark of many chronic diseases, including diabetes and long-term hypertension. We show that acute traumatic brain injury (TBI) leads to endothelial dysfunction in rat mesenteric arteries. Endothelial-dependent dilation was greatly diminished 24 h after TBI because of impaired nitric oxide (NO) production. The activity of arginase, which competes with endothelial NO synthase (eNOS) for the common substrate l-arginine, were also significantly increased in arteries, suggesting that arginase-mediated depletion of l-arginine underlies diminished NO production. Consistent with this, substrate restoration by exogenous application of l-arginine or inhibition of arginase recovered endothelial function. Moreover, evidence for increased reactive oxygen species production, a consequence of l-arginine starvation-dependent eNOS uncoupling, was detected in endothelium and plasma. Collectively, our findings demonstrate endothelial dysfunction in a remote vascular bed after TBI, manifesting as impaired endothelial-dependent vasodilation, with increased arginase activity, decreased generation of NO, and increased O 2 -production. We conclude that blood vessels have a ''molecular memory'' of neurotrauma, 24 h after injury, because of functional changes in vascular endothelial cells; these effects are pertinent to understanding the systemic inflammatory response that occurs after TBI even in the absence of polytrauma.
BackgroundTraumatic brain injury (TBI) has been reported to increase the concentration of nitric oxide (NO) in the brain and can lead to loss of cerebrovascular tone; however, the sources, amounts, and consequences of excess NO on the cerebral vasculature are unknown. Our objective was to elucidate the mechanism of decreased cerebral artery tone after TBI.Methods and ResultsCerebral arteries were isolated from rats 24 hours after moderate fluid‐percussion TBI. Pressure‐induced increases in vasoconstriction (myogenic tone) and smooth muscle Ca2+ were severely blunted in cerebral arteries after TBI. However, myogenic tone and smooth muscle Ca2+ were restored by inhibition of NO synthesis or endothelium removal, suggesting that TBI increased endothelial NO levels. Live native cell NO, indexed by 4,5‐diaminofluorescein (DAF‐2 DA) fluorescence, was increased in endothelium and smooth muscle of cerebral arteries after TBI. Clamped concentrations of 20 to 30 nmol/L NO were required to simulate the loss of myogenic tone and increased (DAF‐2T) fluorescence observed following TBI. In comparison, basal NO in control arteries was estimated as 0.4 nmol/L. Consistent with TBI causing enhanced NO‐mediated vasodilation, inhibitors of guanylyl cyclase, protein kinase G, and large‐conductance Ca2+‐activated potassium (BK) channel restored function of arteries from animals with TBI. Expression of the inducible isoform of NO synthase was upregulated in cerebral arteries isolated from animals with TBI, and the inducible isoform of NO synthase inhibitor 1400W restored myogenic responses following TBI.ConclusionsThe mechanism of profound cerebral artery vasodilation after TBI is a gain of function in vascular NO production by 60‐fold over controls, resulting from upregulation of the inducible isoform of NO synthase in the endothelium.
Histone proteins are elevated in the circulation after traumatic injury owing to cellular lysis and release from neutrophils. Elevated circulating histones in trauma contribute to coagulopathy and mortality through a mechanism suspected to involve endothelial cell (EC) dysfunction. However, the functional consequences of histone exposure on intact blood vessels are unknown. Here, we sought to understand the effects of clinically relevant concentrations of histones on the endothelium in intact, resistance-sized, mesenteric arteries (MAs). EC Ca2+ was measured with high spatial and temporal resolution in MAs from mice selectively expressing the EC-specific, genetically encoded ratiometric Ca2+ indicator, Cx40-GCaMP-GR, and vessel diameter was measured by edge detection. Application of purified histone protein directly to the endothelium of en face mouse and human MA preparations produced large Ca2+ signals that spread within and between ECs. Surprisingly, luminal application of histones had no effect on the diameter of pressurized arteries. Instead, after prolonged exposure (30 min), it reduced dilations to endothelium-dependent vasodilators and ultimately caused death of ~25% of ECs, as evidenced by markedly elevated cytosolic Ca2+ levels (793 ± 75 nM) and uptake of propidium iodide. Removal of extracellular Ca2+ but not depletion of intracellular Ca2+ stores prevented histone-induced Ca2+ signals. Histone-induced signals were not suppressed by transient receptor potential vanilloid 4 (TRPV4) channel inhibition (100 nM GSK2193874) or genetic ablation of TRPV4 channels or Toll-like receptor receptors. These data demonstrate that histones are robust activators of noncanonical EC Ca2+ signaling, which cause vascular dysfunction through loss of endothelium-dependent dilation in resistance-sized MAs. NEW & NOTEWORTHY We describe the first use of the endothelial cell (EC)-specific, ratiometric, genetically encoded Ca2+ indicator, Cx40-GCaMP-GR, to study the effect of histone proteins on EC Ca2+ signaling. We found that histones induce an influx of Ca2+ in ECs that does not cause vasodilation but instead causes Ca2+ overload, EC death, and vascular dysfunction in the form of lost endothelium-dependent dilation.
BACKGROUND Both hyperfibrinolysis and fibrinolysis shutdown can occur after severe trauma. The subgroup of trauma patients with fibrinolysis shutdown resistant to tissue plasminogen activator (t-PA)-mediated fibrinolysis have increased mortality. Fibrin polymerization and structure may influence fibrinolysis subgroups in trauma, but fibrin architecture has not been characterized in acutely injured subjects. We hypothesized that fibrin polymerization measured in situ will correlate with fibrinolysis subgroups. METHODS Blood samples were collected from trauma patients and noninjured controls. We selected samples across a range of fibrinolysis phenotypes (shutdown, physiologic, hyperfibrinolysis) and t-PA sensitivities (sensitive, physiologic, resistant) determined by thrombelastography. Plasma clots were created in situ with fluorescent fibrinogen and imaged using confocal microscopy for analysis of clot architecture in three dimensions. For each clot, we quantified the fiber resolvability, a metric of fiber distinctness or clarity, by mapping the variance of fluorescence intensity relative to background fluorescence. We also determined clot porosity by measuring the size and distribution of the gaps between fibrin fibers in three-dimensional space. We compared these measures across fibrinolysis subgroups. RESULTS Fiber resolvability was significantly lower in all trauma subgroups compared with controls (n = 35 and 5, respectively; p < 0.05). We observed markedly different patterns of fibrin architecture among trauma patients stratified by fibrinolysis subgroup. Subjects with t-PA–resistant fibrinolysis shutdown exhibited abnormal, densely packed fibrin clots nearly devoid of pores. Individuals with t-PA–hypersensitive fibrinolysis shutdown had highly irregular clots with pores as large as 2500 μm3 to 20,000 μm3, versus 78 μm3 to 1250 μm3 in noninjured controls. CONCLUSION Fiber resolvability was significantly lower in trauma patients than controls, and subgroups of fibrinolysis differ in the porosity of the fibrin clot structure. The dense fibrin network in the t-PA–resistant group may prevent access to plasmin, suggesting a mechanism for thrombotic morbidity after injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.