Infectious and inflammatory diseases have repeatedly shown strong genetic associations within the major histocompatibility complex (MHC); however, the basis for these associations remains elusive. To define host genetic effects on the outcome of a chronic viral infection, we performed genome-wide association analysis in a multiethnic cohort of HIV-1 controllers and progressors, and we analyzed the effects of individual amino acids within the classical human leukocyte antigen (HLA) proteins. We identified >300 genome-wide significant single-nucleotide polymorphisms (SNPs) within the MHC and none elsewhere. Specific amino acids in the HLA-B peptide binding groove, as well as an independent HLA-C effect, explain the SNP associations and reconcile both protective and risk HLA alleles. These results implicate the nature of the HLA–viral peptide interaction as the major factor modulating durable control of HIV infection.
Essential oils are concentrated natural extracts derived from plants, which were proved to be good sources of bioactive compounds with antioxidative and antimicrobial properties. This study followed the effect of some commonly used essential oils in micellar and aqueous extract on some of the most common pathogenic bacteria. Frankincense, myrtle, thyme, lemon, oregano and lavender essential oils were tested against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. Both micellar and aqueous extracts were used for determination of their minimal inhibitory (MIC) and bactericidal concentrations (MBC). The most active oils were oregano, thyme, lemon and lavender, while the least active were frankincense and myrtle. Oregano oil presented up to 64 times lower MICs/MBCs than ethylic alcohol, if considered as standard, on all bacteria. Most susceptible bacteria were the Gram-positive cocci, including methicillin resistant S. aureus, while the most resistant was P. aeruginosa. With some exceptions, the best activity was achieved by micelles suspension of essential oils, with MICs and MBCs ranging from 0.1% to > 50% v/v. Only oregano and lavender aqueous extracts presented bactericidal activity and only on K. pneumoniae (MIC = 6.3%). Thyme, lemon and oregano oils present significantly lower overall average MICs for their micellar form than for their aqueous extracts. The present results may suggest some formulas of colloid or micelle suspensions of whole essential oils such as oregano, thyme or lemon oil, that may help in antimicrobial fight. Aqueous extracts of oregano or thyme oil with good antibacterial activity could also be used in selected cases.
One of the most important questions in microbiology nowadays, is how apparently harmless, commensal yeasts like Candida spp. can cause a rising number of infections. The occurrence of the disease requires firstly the attachment to the host cells, followed by the invasion of the tissue. The adaptability translates into a rapid ability to respond to stress factors, to take up nutrients or to multiply under different conditions. By forming complex intracellular networks such as biofilms, Candida spp. become not only more refractive to antifungal therapies but also more prone to cause disease. The inter-microbial interactions can enhance the virulence of a strain. In vivo, the fungal cells face a multitude of challenges and, as a result, they develop complex strategies serving one ultimate goal: survival. This review presents the virulence factors of the most important Candida spp., contributing to a better understanding of the onset of candidiasis and raising awareness of the highly complex interspecies interactions that can change the outcome of the disease.
Biosynthesized silver nanoparticles (AgNPs) are widely used in Pharmacy and Medicine. In particular, AgNPs synthesized and mediated by plant extracts have shown topossess several biological activities. In the present study, AgNPs were synthesized using Picea abies L. stem bark extract as reducing agent. Factors, such as metal ion solution, pH, and time, which play a role in the AgNPs synthesis, were assessed. The synthesized AgNPs were characterized by Ultraviolet-Visible Spectrometry, Fourier transform infrared spectroscopy, and Transmission Electron Microscopy (TEM). Further, the study has been extended to evaluate the antimicrobial and antioxidant activity of AgNPs. The broad peak obtained at 411–475 nm (UV-Vis spectroscopy), and the color change pattern, confirmed the synthesis of AgNPs. TEM results showed spherical or rarely polygonal AgNPs with an average size of 44 nm at pH = 9. The AgNPs showed antioxidant activity and antibacterial effect against human pathogenic Gram-positive and Gram-negative bacteria. The results show that spruce bark extract is suitable for obtaining AgNPs, with antibacterial and antioxidant activity.
Introduction 3. Human gut microbiota composition 3.1 The evolution of microbiota from birth to old age 4. Microbial balance against colony development by pathogens 4.1 The intestinal microbiota in health 5. The Gut-brain, Gut-pulmonary and Gut-skin axes 6. Probiotics, prebiotics and gut microbiota 7. Conclusions 8. Author contributions 9. Ethics approval and consent to participate 10. Acknowledgment 11. Funding 12. Conflict of interest 13. References
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.