The design of functional foods through 3D printing is proposed here as one of the most appropriate technologies to provide closer food personalization for the population. However, it is essential to study the properties of the biomaterials intended to be printed. This work will evaluate the incorporation of rosehip as a functional ingredient in a gluten-free dough. Three types of dough (control, rosehip, and encapsulated rosehip) were printed in a rectangular figure of dimensions 7 cm long, 2 cm wide, and 1, 2, and 3 cm high. Changes in printed figures before and after baking were evaluated by image analysis. Physicochemical properties, total phenols (TP), antioxidant capacity (AC), and total carotenoids (TC) were determined both in the pre-printed doughs and in the printed and baked samples. The bread enriched with rosehips presented more orange colors in dough and crumbs. They were also more acidic than control, probably due to the ascorbic acid content of rosehip. The addition of rosehip generally makes the product more resistant to breakage, which could be due to the fiber content of the rosehip. It was observed that the incorporation of rosehip notably improved the functional properties of the bread.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
The process of 3D food printing is a rapidly growing field that involves the use of specialized 3D printers to produce food items with complex shapes and textures. This technology allows the creation of customized, nutritionally balanced meals on demand. The objective of this study was to evaluate the effect of apricot pulp content on printability. Additionally, the degradation of bioactive compounds of gels before and after printing was evaluated to analyze the effect of the process. For this proposal, physicochemical properties, extrudability, rheology, image analysis, Texture Profile Analysis (TPA), and bioactive compounds content were evaluated. The rheological parameters lead to higher mechanical strength and, thus, a decrease in elastic behavior before and after 3D printing as the pulp content increases. An increase in strength was observed when the pulp content increased; thus, sample gels with 70% apricot pulp were more rigid and presented better buildability (were more stable in their dimensions). On the other hand, a significant (p < 0.05) degradation of total carotenoid content after printing was observed in all samples. From the results obtained, it can be said that the gel with 70% apricot pulp food ink was the best sample in terms of printability and stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.