Rate-controlled Cone Penetration Testing (CPT) using unique portable equipment was recently conducted in Antarctica. This testing was undertaken in an attempt to investigate the strength and thence bearing capacity of polar snow via insitu means. The application of this technique may prove useful in assessing numerous physical parameters of snow and other geomaterials found within the Polar Regions including stratigraphy, density, strength and bearing capacity. This paper explores some of the data found within this preliminary investigation and highlights the possibilities for future employment of the method, including the possibility of introducing Laser Induced Florescence tools (LIF) as additional sensors for the insitu detection and speciation of hydrocarbon contaminants. Further, the measuring of sleeve friction in addition to tip-resistance may provide insight into material microstructure, significantly enhancing any strength estimate. The use of this easily deployable equipment in polar environs can provide significant site investigation data that may not otherwise be obtainable.
ABSTRACT. Commercial cone penetration testing (CPT) equipment was adapted to allow penetrative testing in hard polar firn to depths of 10 m. The apparatus is hydraulically driven, rate-controllable and able to penetrate firn with a resistance of 10 MPa. It can be mounted on many types of typical polar vehicles, requiring connection to only hydraulics and 12 V electricity. Data recorded include both cone tip resistance and sleeve friction, a parameter not previously examined through such testing. This paper describes the development and calibration of the equipment and examines factors including snow density, penetration rate and cone size and shape that are shown to affect CPT interpretation. CPT can be used efficiently in polar environments to potentially provide estimates of physical parameters in hard firn to substantial depth.
While significant studies have been conducted in Intermittently Closed and Open Lakes and Lagoons (ICOLLs), very few have employed Lagrangian drifters. With recent attention on the use of GPS-tracked Lagrangian drifters to study the hydrodynamics of estuaries, there is a need to assess the potential for calibrating models using Lagrangian drifter data. Here, we calibrated and validated a hydrodynamic model in Currimundi Lake, Australia using both Eulerian and Lagrangian velocity field measurements in an open entrance condition. The results showed that there was a higher level of correlation (R2 = 0.94) between model output and observed velocity data for the Eulerian calibration compared to that of Lagrangian calibration (R2 = 0.56). This lack of correlation between model and Lagrangian data is a result of apparent difficulties in the use of Lagrangian data in Eulerian (fixed-mesh) hydrodynamic models. Furthermore, Eulerian and Lagrangian devices systematically observe different spatio-temporal scales in the flow with larger variability in the Lagrangian data. Despite these, the results show that Lagrangian calibration resulted in optimum Manning coefficients (n = 0.023) equivalent to those observed through Eulerian calibration. Therefore, Lagrangian data has the potential to be used in hydrodynamic model calibration in such aquatic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.