Loss of heterozygosity on chromosome 9p21 is one of the most frequent genetic alterations identified in human cancer. The rate of point mutations of p16, a candidate suppressor gene of this area, is low in most primary tumours with allelic loss of 9p21. Monosomic cell lines with structurally unaltered p16 show methylation of the 5' CpG island of p16. This distinct methylation pattern was associated with a complete transcriptional block that was reversible upon treatment with 5-deoxyazacytidine. Moreover, de novo methylation of the 5' CpG island of p16 was also found in approximately 20% of different primary neoplasms, but not in normal tissues, potentially representing a common pathway of tumour suppressor gene inactivation in human cancers.
Many tumour types have been reported to have deletion of 9p21 (refs 1-6). A candidate target suppressor gene, p16 (p16INK4a/MTS-1/CDKN2), was recently identified within the commonly deleted region in tumour cell lines. An increasing and sometimes conflicting body of data has accumulated regarding the frequency of homozygous deletion and the importance of p16 in primary tumours. We tested 545 primary tumours by microsatellite analysis with existing and newly cloned markers around the p16 locus. We have now found that small homozygous deletions represent the predominant mechanism of inactivation at 9p21 in bladder tumours and are present in other tumour types, including breast and prostate cancer. Moreover, fine mapping of these deletions implicates a 170 kb minimal region that includes p16 and excludes p15.
In this study we established the simultaneous status of TP53, p16, p14ARF and PTEN tumor suppressor genes in 34 randomly chosen human glioma cell lines. Nine cell lines (26.4%) harbored mutations or deletions in all four tumor suppressor genes and 22 cell lines (64%) had alterations in at least three. Mutations/deletions were found at the following frequencies: TP53 (76.5%), p14ARF (64.7%), p16 (64.7%), PTEN (73.5%). Thus, there was a high incidence of alterations in the cellular pathways involving the p53 transcription factor (94.1%), the retinoblastoma protein (64.7%) and the PTEN phosphatase (73.5%) and 91% of cell lines carried mutations in two or more pathways. This provides the first clear genetic evidence that these tumor suppressors participate in biological pathways which are functioning separately/independently in glioma cells. The status of the gene alterations did not correlate with tumorigenicity in immunocompromized mice or any clinical parameters. Although the mutation rate was higher in glioma cell lines than that reported for glioma tissues, the alterations were molecularly representative of those found in adult de novo glioblastoma. This study highlights the importance of developing therapeutic approaches applicable to tumors with a broad range of genetic alterations and also provides an invaluable panel of glioma cell lines to make this possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.