This paper addresses the two simultaneous leak diagnosis problem in pipelines based on a state vector reconstruction as a strategy to improve water shortages in large cities by only considering the availability of the flow rate and pressure head measurements at both ends of the pipeline. The proposed algorithm considers the parameters of both leaks as new state variables with constant dynamics, which results in an extended state representation. By applying a suitable persistent input, an invertible mapping in x can be obtained as a function of the input and output, including their time derivatives of the third-order. The state vector can then be reconstructed by means of an algebraic-like observer through the computation of time derivatives using a Numerical Differentiation with Annihilatorsconsidering its inherent noise rejection properties. Experimental results showed that leak parameters were reconstructed with accuracy using a test bed plant built at Cinvestav Guadalajara.
This work deals with the Leak Detection and Isolation (LDI) problem in water pipelines based on some heuristic method and assuming only flow rate and pressure head measurements at both ends of the duct. By considering the single leak case at an interior node of the pipeline, it has been shown that observability is indeed satisfied in this case, which allows designing an observer for the unmeasurable state variables, i.e., the pressure head at leak position. Relying on the fact that the origin of the observation error is exponentially stable if all parameters (including the leak coefficients) are known and uniformly ultimately bounded otherwise, the authors propose a bank of observers as follows: taking into account that the physical pipeline parameters are well-known, and there is only uncertainty about leak coefficients (position and magnitude), a pair of such coefficients is taken from a search space and is assigned to an observer. Then, a Genetic Algorithm (GA) is exploited to minimize the integration of the square observation error. The minimum integral observation error will be reached in the observer where the estimated leak parameters match the real ones. Finally, some results are presented by using real-noisy databases coming from a test bed plant built at Cinvestav-Guadalajara, aiming to show the potentiality of this method.
This paper proposes a methodology based on a genetic algorithms (GA) to calibrate the parameters of a chlorine decay model in a water distribution system (WDS). The proposed methodology first contemplates that a GA is implemented using historical measurements of chlorine concentration at some sensed nodes to calibrate the unknown values corresponding to both the bulk and wall reaction coefficients. Once both parameters are estimated, the optimal-fit chlorine decay model is used to predict the decay of chlorine concentration in the water at each node for any concentration input at the pumping station. Then, a second GA-based algorithm is implemented to obtain the minimal chlorine concentration needed at the input to ensure that every node in the system meets the official normativity requirements for free chlorine in a WDS. The proposed methodology performed satisfactorily for a WDS simulated in EPANET with a GA implemented in MATLAB, both for the estimation of the reaction coefficients and the optimization of the required chlorine concentration at the input. Simulation results illustrate the performance of the proposed algorithm.
The main contribution of this paper is to present a novel solution for the leak diagnosis problem in branched pipeline systems considering the availability of pressure head and flow rate sensors on the upstream (unobstructed) side and the downstream (constricted) side. This approach is based on a bank of Kalman filters as state observers designed on the basis of the classical water hammer equations and a related genetic algorithm (GA) which includes a fitness function based on an integral error that helps obtaining a good estimation despite the presence of noise. For solving the leak diagnosis problem, three stages are considered: a) the leak detection is performed through a mass balance; b) the region where the leak is occurring is identified by implementing a reduced bank of Kalman filters which localize the leak by sweeping all regions of the branching pipeline through a GA that reduces the computational effort; c) the leak position is computed through an algebraic equation derived from the water hammer equations in steady-state. To assess this methodology, experimental results are presented by using a test bed built at the Tuxtla Gutiérrez Institute of Technology, Tecnológico Nacional de México (TecNM). The obtained results are then compared with those obtained using a classic extended Kalman filter which is widely used in solving leak diagnosis problems and it is highlighted that the GA approach outperforms the EKF in two cases whereas the EKF is better in one case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.