Disk-shaped semiconductor nanostructures provide enhanced architectures for low-threshold whispering gallery mode (WGM) lasing with the potential for on-chip nanophotonic integration. Unlike cavities that lase via Fabry-Perot modes, WGM structures utilize low-loss, total internal reflection of the optical mode along the circumference of the structure, which effectively reduces the volume of gain material required for lasing. As a result, circularly resonant cavities provide much higher quality (Q) factors than lower reflection linear cavities, which makes nanodisks an ideal platform to investigate lasing nanostructures smaller than the free-space wavelength of light (i.e., subwavelength laser). Here we report the bottom-up synthesis and single-mode lasing properties of individual ZnO disks with diameters from 280 to 900 nm and show finite difference time domain (FDTD) simulations of the whispering gallery mode inside subwavelength diameter disks. These results demonstrate ultraviolet WGM lasing in chemically synthesized, isolated nanostructures with subwavelength diameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.