One of the most common and most general way to generate fractals is by using iterated function systems which consists of a finite or infinitely many maps. Generalized countable iterated function systems (GCIFS) are a generalization of countable iterated function systems by considering contractions from X × X into X instead of contractions on the metric space X to itself, where (X, d) is a compact metric space. If all contractions of a GCIFS are Lipschitz with respect to a parameter and the supremum of the Lipschitz constants is finite, then the associated attractor depends continuously on the respective parameter.
In this paper, a new type of contraction for several self-mappings of a metric space, called FM-contraction, is introduced. This extends the one presented for a single map by Wardowski [Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012:94, 2012]. Coincidence and common fixed point of eight self mappings satisfying FM-contraction conditions are established via common limit range property without exploiting the completeness of the space or the continuity of the involved maps. Coincidence and common fixed point of eight self-maps satisfying FM-contraction conditions via the common property (E.A.) are also studied. Our results generalize, extend and improve the analogous recent results in the literature, and some examples are presented to justify the validity of our main results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.